Descripteur
Termes descripteurs IGN > sciences humaines et sociales > sociologie > civilisation > culture > art > architecture > bâtiment > toit
toit |



Etendre la recherche sur niveau(x) vers le bas
Automatic filtering and 2D modeling of airborne laser scanning building point cloud / Fayez Tarsha-Kurdi in Transactions in GIS, Vol 25 n° 1 (February 2021)
![]()
[article]
Titre : Automatic filtering and 2D modeling of airborne laser scanning building point cloud Type de document : Article/Communication Auteurs : Fayez Tarsha-Kurdi, Auteur ; Mohammad Awrangjeb, Auteur ; Nosheen Munir, Auteur Année de publication : 2021 Article en page(s) : pp 164 - 188 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] algorithme de filtrage
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] empreinte
[Termes descripteurs IGN] modélisation 2D
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] télémétrie laser aéroporté
[Termes descripteurs IGN] toitRésumé : (Auteur) This article suggests a new approach to automatic building footprint modeling using exclusively airborne LiDAR data. The first part of the suggested approach is the filtering of the building point cloud using the bias of the Z‐coordinate histogram. This operation aims to detect the points of roof class from the building point cloud. Hence, eight rules for histogram interpretation are suggested. The second part of the suggested approach is the roof modeling algorithm. It starts by detecting the roof planes and calculating their adjacency matrix. Hence, the roof plane boundaries are classified into four categories: (1) outer boundary; (2) inner plane boundaries; (3) roof detail boundaries; and (4) boundaries related to the missing planes. Finally, the junction relationships of roof plane boundaries are analyzed for detecting the roof vertices. With regard to the resulting accuracy quantification, the average values of the correctness and the completeness indices are employed in both approaches. In the filtering algorithm, their values are respectively equal to 97.5 and 98.6%, whereas they are equal to 94.0 and 94.0% in the modeling approach. These results reflect the high efficacy of the suggested approach. Numéro de notice : A2021-187 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12685 date de publication en ligne : 11/09/2020 En ligne : https://doi.org/10.1111/tgis.12685 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97154
in Transactions in GIS > Vol 25 n° 1 (February 2021) . - pp 164 - 188[article]Non-stationary extreme value analysis of ground snow loads in the French Alps: a comparison with building standards / Erwann Le Roux in Natural Hazards and Earth System Sciences, vol 20 n° 11 (November 2020)
![]()
[article]
Titre : Non-stationary extreme value analysis of ground snow loads in the French Alps: a comparison with building standards Type de document : Article/Communication Auteurs : Erwann Le Roux, Auteur ; Guillaume Evin, Auteur ; Nicolas Eckert, Auteur ; Juliette Blanchet, Auteur Année de publication : 2020 Article en page(s) : pp 2961 – 2977 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Alpes (France)
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] construction
[Termes descripteurs IGN] épaisseur
[Termes descripteurs IGN] estimation des charges
[Termes descripteurs IGN] manteau neigeux
[Termes descripteurs IGN] norme
[Termes descripteurs IGN] sécurité
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] toit
[Termes descripteurs IGN] valeur limiteMots-clés libres : Ground snow load surcharge de neige Résumé : (auteur) In a context of climate change, trends in extreme snow loads need to be determined to minimize the risk of structure collapse. We study trends in 50-year return levels of ground snow load (GSL) using non-stationary extreme value models. These trends are assessed at a mountain massif scale from GSL data, provided for the French Alps from 1959 to 2019 by a meteorological reanalysis and a snowpack model. Our results indicate a temporal decrease in 50-year return levels from 900 to 4200 m, significant in the northwest of the French Alps up to 2100 m. We detect the most important decrease at 900 m with an average of −30 % for return levels between 1960 and 2010. Despite these decreases, in 2019 return levels still exceed return levels designed for French building standards under a stationary assumption. At worst (i.e. at 1800 m), return levels exceed standards by 15 % on average, and half of the massifs exceed standards. We believe that these exceedances are due to questionable assumptions concerning the computation of standards. For example, these were devised with GSL, estimated from snow depth maxima and constant snow density set to 150 kg m−3, which underestimate typical GSL values for the snowpack. Numéro de notice : A2020-713 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5194/nhess-20-2961-2020 date de publication en ligne : 06/11/2020 En ligne : https://doi.org/10.5194/nhess-20-2961-2020 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96279
in Natural Hazards and Earth System Sciences > vol 20 n° 11 (November 2020) . - pp 2961 – 2977[article]Outlier detection and robust plane fitting for building roof extraction from LiDAR data / Emon Kumar Dey in International Journal of Remote Sensing IJRS, vol 41 n°16 (01-10 May 2020)
![]()
[article]
Titre : Outlier detection and robust plane fitting for building roof extraction from LiDAR data Type de document : Article/Communication Auteurs : Emon Kumar Dey, Auteur ; Mohammad Awrangjeb, Auteur ; Bela Stantic, Auteur Année de publication : 2020 Article en page(s) : pp 6325 - 6354 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] toit
[Termes descripteurs IGN] valeur aberranteRésumé : (auteur) Individual roof plane extraction from Light Detection and Ranging (LiDAR) point-cloud data is a complex and difficult task because of unknown semantic characteristics and inharmonious behaviour of input data. Most of the existing state-of-the-art methods fail to detect small true roof planes with exact boundaries due to outliers, occlusions, complex building structures, and other inconsistent nature of LiDAR data. In this paper, we have presented an improved building detection and roof plane extraction method, which is less sensitive to the outliers and unlikely to generate spurious planes. For this, a robust outlier detection algorithm has been proposed in this paper along with a robust plane-fitting algorithm based on M-estimator SAmple Consensus (MSAC) for detecting individual roof planes. Using two benchmark datasets (Australian and International Society for Photogrammetry and Remote Sensing benchmark) with different numbers of buildings and sizes, trees and point densities, we have evaluated the proposed method. Experimental results show that the method removes outliers and vegetation almost accurately and offers a high success rate in terms of completeness and correctness (between 80% and 100% per-object) for both roof plane extraction and building detection. In most of the cases, the proposed method shows above 90% correctness. Numéro de notice : A2020-454 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1737339 date de publication en ligne : 09/06/2020 En ligne : https://doi.org/10.1080/01431161.2020.1737339 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95543
in International Journal of Remote Sensing IJRS > vol 41 n°16 (01-10 May 2020) . - pp 6325 - 6354[article]Modelling of buildings from aerial LiDAR point clouds using TINs and label maps / Minglei Li in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
![]()
[article]
Titre : Modelling of buildings from aerial LiDAR point clouds using TINs and label maps Type de document : Article/Communication Auteurs : Minglei Li, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2019 Article en page(s) : pp 127 - 138 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] modèle numérique du bâti
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] toit
[Termes descripteurs IGN] Triangulated Irregular NetworkRésumé : (Auteur) This paper presents a new framework for automatically creating compact building models from aerial LiDAR point clouds, where each point is known to belong to the class building. The approach addresses the issues of non-uniform point density and outlier detection to extract and refine semantic roof structures by a sequence of operations on a label map. We first partition the points into some coarse regions based on a region growing method over the Triangulated Irregular Network (TIN) model. The region label IDs are then projected to a 2D grid map, which is used to refine the roof regions and their boundaries. We design an energy optimization approach on the label map to optimize the region labels. In order to regularize the contours of roof regions extracted from the label map, we propose a new method for refining contour segment vertices, which iteratively filters the normals of contour segments and uses them to guide the update of contour vertices. The effectiveness of this method is evaluated on LiDAR point clouds from different scenes, and its performance is validated by extensive comparisons to state-of-the-art techniques. Numéro de notice : A2019-267 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.06.003 date de publication en ligne : 11/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.06.003 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93082
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 127 - 138[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019083 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt RoofN3D: a database for 3D building reconstruction with deep learning / Andreas Wichmann in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 6 (June 2019)
![]()
[article]
Titre : RoofN3D: a database for 3D building reconstruction with deep learning Type de document : Article/Communication Auteurs : Andreas Wichmann, Auteur ; Amgad Agoub, Auteur ; Valentina Schmidt, Auteur Année de publication : 2019 Article en page(s) : pp 435 - 443 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] .Net
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] base de données localisées 3D
[Termes descripteurs IGN] données d'apprentissage
[Termes descripteurs IGN] reconstruction 3D du bâti
[Termes descripteurs IGN] toitRésumé : (Auteur) Machine learning methods, in particular those based on deep learning, have gained in importance through the latest development of artificial intelligence and computer hardware. However, the direct application of deep learning methods to improve the results of 3D building reconstruction is often not possible due, for example, to the lack of suitable training data. To address this issue, we present RoofN3D which provides a three-dimensional (3D) point cloud training dataset that can be used to train machine learning models for different tasks in the context of 3D building reconstruction. The details about RoofN3D and the developed framework to automatically derive such training data are described in this paper. Furthermore, we provide an overview of other available 3D point cloud training data and approaches from current literature in which solutions for the application of deep learning to 3D point cloud data are presented. Finally, we exemplarily demonstrate how the provided data can be used to classify building roofs with the PointNet framework. Numéro de notice : A2019-248 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.6.435 En ligne : https://doi.org/10.14358/PERS.85.6.435 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93004
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 6 (June 2019) . - pp 435 - 443[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019061 SL Revue Centre de documentation Revues en salle Disponible PermalinkAutomatic building rooftop extraction from aerial images via hierarchical RGB-D priors / Shibiao Xu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
PermalinkA greyscale voxel model for airborne lidar data applied to building detection / Liying Wang in Photogrammetric record, vol 33 n° 164 (December 2018)
PermalinkExtraction of building roof planes with stratified random sample consensus / André C. Carrilho in Photogrammetric record, vol 33 n° 163 (September 2018)
PermalinkThree-dimensional building façade segmentation and opening area detection from point clouds / S.M. Iman Zolanvari in ISPRS Journal of photogrammetry and remote sensing, vol 143 (September 2018)
PermalinkGeometric reasoning with uncertain polygonal faces / Jochen Meidow in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 6 (juin 2018)
PermalinkUse of LiDAR for calculating solar irradiance on roofs and façades of buildings at city scale: Methodology, validation, and analysis / Liang Cheng in ISPRS Journal of photogrammetry and remote sensing, vol 138 (April 2018)
PermalinkBuilding extraction from fused LiDAR and hyperspectral data using Random Forest Algorithm / Saeid Parsian in Geomatica [en ligne], vol 71 n° 4 (December 2017)
Permalink3d roof model generation and analysis supporting solar system positioning / Filiberto Chiabrando in Geomatica [en ligne], vol 71 n° 3 (September 2017)
Permalink3D building roof reconstruction from airborne LiDAR point clouds : a framework based on a spatial database / Rujun Cao in International journal of geographical information science IJGIS, vol 31 n° 7-8 (July - August 2017)
Permalink