Descripteur


Etendre la recherche sur niveau(x) vers le bas
An implicit radar convolutional burn index for burnt area mapping with Sentinel-1 C-band SAR data / Puzhao Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 158 (December 2019)
![]()
[article]
Titre : An implicit radar convolutional burn index for burnt area mapping with Sentinel-1 C-band SAR data Type de document : Article/Communication Auteurs : Puzhao Zhang, Auteur ; Andrea Nascetti, Auteur ; Yifang Ban, Auteur ; Maoguo Gong, Auteur Année de publication : 2019 Article en page(s) : pp 50 - 62 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] Californie (Etats-Unis)
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] incendie
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Short Waves InfraRedRésumé : (auteur) Compared with optical sensors, the all-weather and day-and-night imaging ability of Synthetic Aperture Radar (SAR) makes it competitive for burnt area mapping. This study investigates the potential of Sentinel-1 C-band SAR sensors in burnt area mapping with an implicit Radar Convolutional Burn Index (RCBI). Based on multitemporal Sentinel-1 SAR data, a convolutional networks-based classification framework is proposed to learn the RCBI for highlighting the burnt areas. We explore the mapping accuracy level that can be achieved using SAR intensity and phase information for both VV and VH polarizations. Moreover, we investigate the decorrelation of Interferometric SAR (InSAR) coherence to wildfire events using different temporal baselines. The experimental results on two recent fire events, Thomas Fire (Dec., 2017) and Carr Fire (July, 2018) in California, demonstrate that the learnt RCBI has a better potential than the classical log-ratio operator in highlighting burnt areas. By exploiting both VV and VH information, the developed RCBI achieved an overall mapping accuracy of 94.68% and 94.17% on the Thomas Fire and Carr Fire, respectively. Numéro de notice : A2019-545 Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.09.013 date de publication en ligne : 04/10/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.09.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94189
in ISPRS Journal of photogrammetry and remote sensing > Vol 158 (December 2019) . - pp 50 - 62[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2019121 SL Revue Centre de documentation Revues en salle Disponible Combining Sentinel-1 and Sentinel-2 Satellite image time series for land cover mapping via a multi-source deep learning architecture / Dino Lenco in ISPRS Journal of photogrammetry and remote sensing, Vol 158 (December 2019)
![]()
[article]
Titre : Combining Sentinel-1 and Sentinel-2 Satellite image time series for land cover mapping via a multi-source deep learning architecture Type de document : Article/Communication Auteurs : Dino Lenco, Auteur ; Roberto Interdonato, Auteur ; Raffaele Gaetano, Auteur ; Ho Tong Minh Dinh, Auteur Année de publication : 2019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] Burkina Faso
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] Réunion, île de la
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) The huge amount of data currently produced by modern Earth Observation (EO) missions has allowed for the design of advanced machine learning techniques able to support complex Land Use/Land Cover (LULC) mapping tasks. The Copernicus programme developed by the European Space Agency provides, with missions such as Sentinel-1 (S1) and Sentinel-2 (S2), radar and optical (multi-spectral) imagery, respectively, at 10 m spatial resolution with revisit time around 5 days. Such high temporal resolution allows to collect Satellite Image Time Series (SITS) that support a plethora of Earth surface monitoring tasks. How to effectively combine the complementary information provided by such sensors remains an open problem in the remote sensing field. In this work, we propose a deep learning architecture to combine information coming from S1 and S2 time series, namely TWINNS (TWIn Neural Networks for Sentinel data), able to discover spatial and temporal dependencies in both types of SITS. The proposed architecture is devised to boost the land cover classification task by leveraging two levels of complementarity, i.e., the interplay between radar and optical SITS as well as the synergy between spatial and temporal dependencies. Experiments carried out on two study sites characterized by different land cover characteristics (i.e., the Koumbia site in Burkina Faso and Reunion Island, a overseas department of France in the Indian Ocean), demonstrate the significance of our proposal. Numéro de notice : A2019-544 Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.09.016 date de publication en ligne : 27/09/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.09.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94186
in ISPRS Journal of photogrammetry and remote sensing > Vol 158 (December 2019)[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2019121 SL Revue Centre de documentation Revues en salle Disponible Evolution of sand encroachment using supervised classification of Landsat data during the period 1987–2011 in a part of Laâyoune-Tarfaya basin of Morocco / Ali Aydda in Geocarto international, vol 34 n° 13 ([15/10/2019])
![]()
[article]
Titre : Evolution of sand encroachment using supervised classification of Landsat data during the period 1987–2011 in a part of Laâyoune-Tarfaya basin of Morocco Type de document : Article/Communication Auteurs : Ali Aydda, Auteur ; Omar F. Althuwaynee, Auteur ; Ahmed Algouti, Auteur ; Abdellah Algouti, Auteur Année de publication : 2019 Article en page(s) : pp 1514 - 1529 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] carte géomorphologique
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] classification par maximum de vraisemblance
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] dune
[Termes descripteurs IGN] image Landsat
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] littoral
[Termes descripteurs IGN] Maroc
[Termes descripteurs IGN] sable
[Termes descripteurs IGN] vent de sableRésumé : (auteur) The study anticipated to understand sand encroachment evolution through analysis of sand contribution across space and time using remote sensing in Laâyoune-Tarfaya basin, Morocco, over the period from 1987 to 2011. The assessment based on supervised classifications of Landsat imagery orthorectified data, using Maximum Likelihood (ML), Minimum Distance (MD) and Support Vector Machine (SVM) classifiers. In order to ameliorate the information, principal components analysis (PCA) and co-occurrence measurement algorithm were used for choosing bands and data transformation. Images differencing was applied on image pairs derived from classification to analyze sand encroachment evolution. All classifiers present enhanced performances, and revealed that area covered by sand was increased by 7%, 4.66% and 4.59% for ML, MD and SVM, respectively. Consequently, images differencing results confirmed that sand material increasing arise not only from coastal area contribution but also mostly from erosion of complicated sand dunes exist in the middle part of the studied area. Evaluating of the presented phenomenon dimensions and its consequences are extremely important to increase the local authorities awareness and mainly for avoiding or minimizing the consequences of the future sand dunes threats. Numéro de notice : A2019-511 Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1493154 date de publication en ligne : 07/09/2018 En ligne : https://doi.org/10.1080/10106049.2018.1493154 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93820
in Geocarto international > vol 34 n° 13 [15/10/2019] . - pp 1514 - 1529[article]Combining machine learning and compact polarimetry for estimating soil moisture from C-Band SAR data / Emanuele Santi in Remote sensing, Vol 11 n° 20 (2 October 2019)
![]()
[article]
Titre : Combining machine learning and compact polarimetry for estimating soil moisture from C-Band SAR data Type de document : Article/Communication Auteurs : Emanuele Santi, Auteur ; Mohammed Dabboor, Auteur ; Simone Pettinato, Auteur ; Simonetta Paloscia, Auteur Année de publication : 2019 Article en page(s) : 18 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Radarsat
[Termes descripteurs IGN] Manitoba (Canada)
[Termes descripteurs IGN] polarimétrie
[Termes descripteurs IGN] polarisation
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surface cultivéeRésumé : (auteur) This research aimed at exploiting the joint use of machine learning and polarimetry for improving the retrieval of surface soil moisture content (SMC) from synthetic aperture radar (SAR) acquisitions at C-band. The study was conducted on two agricultural areas in Canada, for which a series of RADARSAT-2 (RS2) images were available along with direct measurements of SMC from in situ stations. The analysis confirmed the sensitivity of RS2 backscattering (O°) to SMC. The comparison of SMC with the compact polarimetry (CP) parameters, computed from the RS2 acquisitions by the CP data simulator, pointed out that some CP parameters had a sensitivity to SMC equal or better than O°, with correlation coe?cients up to R ' 0.4. Based on these results, the potential of machine learning (ML) for SMC retrieval was exploited by implementing and testing on the available data an artificial neural network (ANN) algorithm. The algorithm was implemented using several combinations of O° and CP parameters. Validation results of the algorithm with in situ observations confirmed the promising capabilities of the ML techniques for SMC monitoring. Furthermore, results pointed out the potential of CP in improving the SMC retrieval accuracy, especially when used in combination with linearly polarized O°. Depending on the considered input combination, the ANN algorithm was able to estimate SMC with Root Mean Square Error (RMSE) between 3% and 7% of SMC and R between 0.7 and 0.9. Numéro de notice : A2019-555 Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs11202451 date de publication en ligne : 22/10/2019 En ligne : https://doi.org/10.3390/rs11202451 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94210
in Remote sensing > Vol 11 n° 20 (2 October 2019) . - 18 p.[article]Comparative analysis of the accuracy of surface soil moisture estimation from the C- and L-bands / Mohammad El Hajj in International journal of applied Earth observation and geoinformation, vol 82 (October 2019)
![]()
[article]
Titre : Comparative analysis of the accuracy of surface soil moisture estimation from the C- and L-bands Type de document : Article/Communication Auteurs : Mohammad El Hajj, Auteur ; Nicolas Baghdadi, Auteur ; Mehrez Zribi, Auteur Année de publication : 2019 Article en page(s) : 13 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image ALOS-PALSAR
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] surface cultivéeRésumé : (auteur) Surface soil moisture (SSM) estimation is of great importance in several areas, such as hydrology, agriculture and risk assessment. C-band SAR (synthetic aperture radar) data have been widely used to estimate SSM, whereas few studies have been performed using L-band SAR due to the low availability of L-band SAR data. In this context, the objective of the present paper is to compare the SSM estimation potentials of the C- (Sentinel-1) and L-bands (PALSAR) for wheat and grassland plots. The inversion approach developed in this study uses neural networks to invert the SAR signal and estimate the SSM. For each radar frequency, the developed neural networks were trained using the following as an input vector: SAR incidence angle, SAR polarization (VV for the C-band and HH for the L-band), and NDVI from optical images. Artificial Neural networks (ANNs) were developed and validated using synthetic and real databases. The results showed that the L-band provided slightly less accurate SSM estimates than the C-band. Moreover, the results showed that the accuracies of the SSM estimates for both frequencies strongly depended on the soil roughness (Hrms) and SSM values. From the synthetic database at SSM values less than 25 vol.%, the ANNs underestimated the SSM for Hrms values less than 1.5 cm and overestimated the SSM for Hrms values greater than 1.5 cm. In addition, the ANNs underestimated the SSM value regardless of the Hrms value when the SSM value was greater than 25 vol.%. An RMSE analysis of the SSM estimates showed that the highest RMSE values were observed for the L-band regardless of the SSM value, and high RMSE values were observed for the C-band only in very wet soil conditions (SSM>25 vol.%). From the real database at NDVI values less than 0.7, the RMSE (root mean square error) of the SSM estimates was 4.6 vol.% for the C-band and 5.3 vol.% for the L-band. Most importantly, the L-band enabled the estimation of the SSM under a well-developed vegetation cover (NDVI > 0.7) with an RMSE of 6.7 vol.%, whereas the C-band SAR signal became completely attenuated for some crops when the NDVI value was greater than 0.7, and thus the estimation of SSM was impossible using the C-band. Numéro de notice : A2019-473 Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern date de publication en ligne : 29/06/2019 En ligne : https://doi.org/10.1016/j.jag.2019.05.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93634
in International journal of applied Earth observation and geoinformation > vol 82 (October 2019) . - 13 p.[article]PermalinkTraffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning / Yann Méneroux in International Journal of Data Science and Analytics JDSA, vol inconnu ([01/10/2019])
PermalinkUsing a U-net convolutional neural network to map woody vegetation extent from high resolution satellite imagery across Queensland, Australia / Neil Flood in International journal of applied Earth observation and geoinformation, vol 82 (October 2019)
PermalinkMultitemporal Landsat-MODIS fusion for cropland drought monitoring in El Salvador / Nguyen-Thanh Son in Geocarto international, vol 34 n° 12 ([15/09/2019])
PermalinkChange detection work-flow for mapping changes from arable lands to permanent grasslands with advanced boosting methods / Jiří Šandera in Geodetski vestnik, vol 63 n° 3 (September - November 2019)
PermalinkCultures of Enthusiasm: An Ethnographic Study of Amateur Map-Maker Communities / Mike Duggan in Cartographica, vol 54 n° 3 (Fall 2019)
PermalinkExploring the synergy between Landsat and ASAR towards improving thematic mapping accuracy of optical EO data / Alexander Cass in Applied geomatics, vol 11 n° 3 (September 2019)
PermalinkFree and open-source GIS technologies for the management of woody biomass / Michele Mangiameli in Applied geomatics, vol 11 n° 3 (September 2019)
PermalinkMise en oeuvre d'outils open source pour le suivi opérationnel de l'occupation des sols et de la déforestation à partir des données Sentinel radar optique : études de cas en Guyane et au Togo / Cédric Lardeux in Revue Française de Photogrammétrie et de Télédétection, n° 219-220 (juin - décembre 2019)
PermalinkPolarimétrie radar complète et partielle pour le suivi des surfaces terrestres / Pierre-Louis Frison in Revue Française de Photogrammétrie et de Télédétection, n° 219-220 (juin - décembre 2019)
Permalink