Descripteur
Termes IGN > environnement > écologie > écosystème > biotope > milieu naturel
milieu naturel
Commentaire :
Espace naturel employé pour :
milieu naturel, zone naturelle. nature. >> campagne, biome, paysage, site naturel. >>Terme(s) spécifique(s) : cours d'eau, désert, dune, espace protégé, forêt, fynbos, lagon, lagune, lande, littoral, marais, marécage, mer, montagne, région polaire, savane, steppe, tourbière, zone naturelle d'intérêt écologique faunistique et floristique, zone humide. Equiv. LCSH : Pas d'équivalent. Domaine(s) : 550. |
Documents disponibles dans cette catégorie (690)


Etendre la recherche sur niveau(x) vers le bas
Remote sensing techniques for water management and climate change monitoring in drought areas: case studies in Egypt and Tunisia / Lifan Ji in European journal of remote sensing, vol 56 n° 1 (2023)
![]()
[article]
Titre : Remote sensing techniques for water management and climate change monitoring in drought areas: case studies in Egypt and Tunisia Type de document : Article/Communication Auteurs : Lifan Ji, Auteur ; Yihao Shao, Auteur ; Jianjun Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 1 - 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] changement climatique
[Termes IGN] Egypte
[Termes IGN] gestion de l'eau
[Termes IGN] humidité du sol
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] réseau neuronal artificiel
[Termes IGN] stress hydrique
[Termes IGN] Tunisie
[Termes IGN] zone semi-arideRésumé : (auteur) This study focused on monitoring the water status of vegetation and soil by exploiting the synergy of optical and microwave satellite data with the aim of improving the knowledge of water cycle in cultivated lands in Egyptian Delta and Tunisian areas. Environmental analysis approaches based on optical and synthetic aperture radar data were carried out to set up the basis for future implementation of practical and cost-effective methods for sustainable water use in agriculture. Long-term behaviors of vegetation indices were thus analyzed between 2000 and 2018. By using SAR data from Sentinel-1, an Artificial Neural Network-based algorithm was implemented for estimating soil moisture and monthly maps for 2018 have been generated to be compared with information derived from optical indices. Moreover, a novel drought severity index was developed and applied to available data. The index was obtained by combining vegetation soil difference index, derived from optical data, and soil moisture content derived from SAR data. The proposed index was found capable of complementing optical and microwave sensitivity to drought-related parameters, although ground data are missing for correctly validating the results, by capturing drought patterns and their temporal evolution better than indices based only on microwave or optical data. Numéro de notice : A2023-103 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2022.2157335 Date de publication en ligne : 06/01/2023 En ligne : https://doi.org/10.1080/22797254.2022.2157335 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102430
in European journal of remote sensing > vol 56 n° 1 (2023) . - pp 1 - 16[article]A deep learning framework based on generative adversarial networks and vision transformer for complex wetland classification using limited training samples / Ali Jamali in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)
![]()
[article]
Titre : A deep learning framework based on generative adversarial networks and vision transformer for complex wetland classification using limited training samples Type de document : Article/Communication Auteurs : Ali Jamali, Auteur ; Masoud Mahdianpari, Auteur ; fariba Mohammadimanesh, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103095 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] Canada
[Termes IGN] carte thématique
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] réseau antagoniste génératif
[Termes IGN] zone humideRésumé : (auteur) Wetlands have long been recognized among the most critical ecosystems globally, yet their numbers quickly diminish due to human activities and climate change. Thus, large-scale wetland monitoring is essential to provide efficient spatial and temporal insights for resource management and conservation plans. However, the main challenge is the lack of enough reference data for accurate large-scale wetland mapping. As such, the main objective of this study was to investigate the efficient deep-learning models for generating high-resolution and temporally rich training datasets for wetland mapping. The Sentinel-1 and Sentinel-2 satellites from the European Copernicus program deliver radar and optical data at a high temporal and spatial resolution. These Earth observations provide a unique source of information for more precise wetland mapping from space. The second objective was to investigate the efficiency of vision transformers for complex landscape mapping. As such, we proposed a 3D Generative Adversarial Network (3D GAN) to best achieve these two objectives of synthesizing training data and a Vision Transformer model for large-scale wetland classification. The proposed approach was tested in three different study areas of Saint John, Sussex, and Fredericton, New Brunswick, Canada. The results showed the ability of the 3D GAN to stimulate and increase the number of training data and, as a result, increase the accuracy of wetland classification. The quantitative results also demonstrated the capability of jointly using data augmentation, 3D GAN, and Vision Transformer models with overall accuracy, average accuracy, and Kappa index of 75.61%, 73.4%, and 71.87%, respectively, using a disjoint data sampling strategy. Therefore, the proposed deep learning method opens a new window for large-scale remote sensing wetland classification. Numéro de notice : A2022-828 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103095 Date de publication en ligne : 08/11/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103095 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102012
in International journal of applied Earth observation and geoinformation > vol 115 (December 2022) . - n° 103095[article]Fusion of SAR and multi-spectral time series for determination of water table depth and lake area in peatlands / Katrin Krzepek in PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, vol 90 n° 6 (December 2022)
![]()
[article]
Titre : Fusion of SAR and multi-spectral time series for determination of water table depth and lake area in peatlands Type de document : Article/Communication Auteurs : Katrin Krzepek, Auteur ; Jacob Schmidt, Auteur ; Dorota Iwaszczuk, Auteur Année de publication : 2022 Article en page(s) : pp 561 - 575 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage non-dirigé
[Termes IGN] aquifère
[Termes IGN] Bade-Wurtemberg (Allemagne)
[Termes IGN] bande C
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] fusion d'images
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Normalized Difference Water Index
[Termes IGN] puits de carbone
[Termes IGN] seuillage d'image
[Termes IGN] théorie de Dempster-Shafer
[Termes IGN] tourbièreRésumé : (auteur) Peatlands as natural carbon sinks have a major impact on the climate balance and should therefore be monitored and protected. The hydrology of the peatland serves as an indicator of the carbon storage capacity. Hence, we investigate the question how suitable different remote sensing data are for monitoring the size of open water surface and the water table depth (WTD) of a peatland ecosystem. Furthermore, we examine the potential of combining remote sensing data for this purpose. We use C-band synthetic aperture radar (SAR) data from Sentinel-1 and multi-spectral data from Sentinel-2. The radar backscatter σ0, the normalized difference water index (NDWI) and the modified normalized difference water index (MNDWI) are calculated and used for consideration of the WTD and the lake size. For the measurement of the lake size, we implement and investigate the methods: random forest, adaptive thresholding and an analysis according to the Dempster–Shafer theory. Correlations between WTD and the remote sensing data σ0 as well as NDWI are investigated. When looking at the individual data sets the results of our case study show that the VH polarized σ0 data produces the clearest delineation of the peatland lake. However the adaptive thresholding of the weighted fusion image of σ0-VH, σ0-VV and MNDWI, and the random forest algorithm with all three data sets as input proves to be the most suitable for determining the lake area. The correlation coefficients between σ0/NDWI and WTD vary greatly and lie in ranges of low to moderate correlation. Numéro de notice : A2022-942 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s41064-022-00216-w Date de publication en ligne : 06/09/2022 En ligne : https://doi.org/10.1007/s41064-022-00216-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102876
in PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science > vol 90 n° 6 (December 2022) . - pp 561 - 575[article]Urban wetland fragmentation and ecosystem service assessment using integrated machine learning algorithm and spatial landscape analysis / Das Subhasis in Geocarto international, vol 37 n° 25 ([01/12/2022])
![]()
[article]
Titre : Urban wetland fragmentation and ecosystem service assessment using integrated machine learning algorithm and spatial landscape analysis Type de document : Article/Communication Auteurs : Das Subhasis, Auteur ; Partha Pratim Adhikary, Auteur ; Pravat Kumar Shit, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 7800 - 7818 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] analyse du paysage
[Termes IGN] analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] Calcutta
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] Inde
[Termes IGN] occupation du sol
[Termes IGN] QGIS
[Termes IGN] régression multiple
[Termes IGN] service écosystémique
[Termes IGN] zone humide
[Termes IGN] zone urbaineRésumé : (auteur) Dynamics of ecosystem service value (ESV) of various wetlands has been assessed by researchers globally. But the impact of spatio-temporal variation of landscape metrics on ESV in the lower Gangetic plains has not been examined, fully. The present work has established linkages between landscape metrics and ESV in Kolkata urban agglomeration using support vector machine and multivariate regression analysis. Result indicates that wetland area has been reduced by 5.26%, 13.67% and 9.03% during the periods 1990–2000, 2000–2010 and 2010–2020, respectively and the ESV contributed by wetlands has been decreased by $131428, $323674 and $184649, respectively during the same period at an annual rate of 0.85%. Number of patches, mean patch area and edge density are the main determinants of wetland fragmentation and decreased by 44.12%, 10.23% and 8.65%, respectively during the last three decades. A wetland restoration strategy based on dynamic restoration, reactive restoration and wetland creation for the study area has been formulated, which can guide for sustainable management of wetland resources in Kolkata urban agglomeration. Numéro de notice : A2022-930 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1080/10106049.2021.1985174 Date de publication en ligne : 03/11/2021 En ligne : https://doi.org/10.1080/10106049.2021.1985174 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102665
in Geocarto international > vol 37 n° 25 [01/12/2022] . - pp 7800 - 7818[article]Beyond topo-climatic predictors: Does habitats distribution and remote sensing information improve predictions of species distribution models? / Arthur Sanguet in Global ecology and conservation, vol 39 (November 2022)
![]()
[article]
Titre : Beyond topo-climatic predictors: Does habitats distribution and remote sensing information improve predictions of species distribution models? Type de document : Article/Communication Auteurs : Arthur Sanguet, Auteur ; Nicolas Wyler, Auteur ; Blaise Petitpierre, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° e02286 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] carte d'occupation du sol
[Termes IGN] changement climatique
[Termes IGN] distribution spatiale
[Termes IGN] échantillonnage de données
[Termes IGN] habitat (nature)
[Termes IGN] modèle de simulation
[Termes IGN] montagne
[Termes IGN] pédologie locale
[Termes IGN] Suisse
[Termes IGN] télédétection
[Termes IGN] topographie locale
[Termes IGN] zone humide
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Species Distribution Models (SDM) represent a powerful tool to predict species’ habitat suitability on a landscape and fill the gap between truncated observation data and all possible locations. SDMs have been widely used in theoretical studies of species niches as well as in conservation applications. Here, we evaluated the impacts of predictors’ type on models’ performances and spatial predictions using 72 plant species belonging to six ecological groups at a regional scale in the area of Geneva (Switzerland). Twelve models were created using various combinations of high-resolution (25 m) explanatory variables including topography, pedology, climate, habitats and remote sensing data. Models integrating a combination of habitats and topopedo-climatic predictors had significantly higher performances, while remote sensing predictors showed low performances. Our results suggest that the number and the level of details of habitat predictors (broad or very precise) do not fundamentally affect prediction maps. However, selecting too few, overly simplified or exceedingly complex habitat predictors tend to lower models’ performances. The use of eight habitat categories complemented with eight topopedo-climatic predictors produced models with the highest performances. Ecological groups of species responded differently to models and while alpine and ruderal species have greater average performances due to a high affinity with topopedo-climatic predictors, wetlands’ species were less performant on average. These results underline the necessity of developing or having access to habitats distribution data especially in a conservation context. Numéro de notice : A2022-815 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article DOI : 10.1016/j.gecco.2022.e02286 Date de publication en ligne : 13/09/2022 En ligne : https://doi.org/10.1016/j.gecco.2022.e02286 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101977
in Global ecology and conservation > vol 39 (November 2022) . - n° e02286[article]Deep learning high resolution burned area mapping by transfer learning from Landsat-8 to PlanetScope / V.S. Martins in Remote sensing of environment, vol 280 (October 2022)
PermalinkMapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series / Maximilian Lange in Remote sensing of environment, vol 277 (August 2022)
PermalinkMultiscale assimilation of Sentinel and Landsat data for soil moisture and Leaf Area Index predictions using an ensemble-Kalman-filter-based assimilation approach in a heterogeneous ecosystem / Nicola Montaldo in Remote sensing, vol 14 n° 14 (July-2 2022)
PermalinkHeat wave-induced augmentation of surface urban heat islands strongly regulated by rural background / Shiqi Miao in Sustainable Cities and Society, vol 82 (July 2022)
PermalinkA voxel-based method for the three-dimensional modelling of heathland from lidar point clouds: first results / N. Homainejad in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
PermalinkEstimation and testing of linkages between forest structure and rainfall interception characteristics of a Robinia pseudoacacia plantation on China’s Loess Plateau / Changkun Ma in Journal of Forestry Research, vol 33 n° 2 (April 2022)
PermalinkThe integration of multi-source remotely sensed data with hierarchically based classification approaches in support of the classification of wetlands / Aaron Judah in Canadian journal of remote sensing, vol 48 n° 2 (April 2022)
PermalinkAboveground biomass estimation of an agro-pastoral ecology in semi-arid Bundelkhand region of India from Landsat data: a comparison of support vector machine and traditional regression models / Dibyendu Deb in Geocarto international, vol 37 n° 4 ([15/02/2022])
PermalinkMaps, volunteered geographic information (VGI) and the spatio-discursive construction of nature / Juan Astaburuaga in Digital Geography and Society, vol 3 (2022)
PermalinkApport de la télédétection et des variables auxiliaires dans l'étude de l'évolution des périodes de sécheresse / Nesrine Farhani (2022)
Permalink