Descripteur
Termes IGN > sciences naturelles > physique > traitement du signal > signal aléatoire > bruit (théorie du signal)
bruit (théorie du signal)Voir aussi |
Documents disponibles dans cette catégorie (194)



Etendre la recherche sur niveau(x) vers le bas
Multi-frequency quadrifilar helix antennas for cm-accurate GNSS positioning / Lambert Wanninger in Journal of applied geodesy, vol 16 n° 1 (January 2022)
![]()
[article]
Titre : Multi-frequency quadrifilar helix antennas for cm-accurate GNSS positioning Type de document : Article/Communication Auteurs : Lambert Wanninger, Auteur ; Melanie Thiemig, Auteur ; Walker Frevert, Auteur Année de publication : 2022 Article en page(s) : pp 25 - 35 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] antenne GNSS
[Termes IGN] bruit (théorie du signal)
[Termes IGN] étalonnage d'instrument
[Termes IGN] fréquence multiple
[Termes IGN] phase GNSS
[Termes IGN] positionnement par GNSS
[Termes IGN] précision centimétrique
[Termes IGN] signal GNSS
[Termes IGN] trajet multipleRésumé : (auteur) For a few years now, GNSS multi-frequency quadrifilar helix antennas (QHA) are available to be used for precise GNSS applications. We performed test measurements with two types of multi-frequency QHA and compared them with a geodetic patch antenna. Although code and carrier phase noise and high-frequent multipath was determined to be larger as compared to the geodetic antenna, the fast-static horizontal coordinate accuracies are on the same level and demonstrate cm-accuracy capability. One of the QHA types exhibited an increased susceptibility to near-field multipath effects which resulted in a degraded accuracy of the vertical coordinate component. Numéro de notice : A2022-054 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jag-2021-0042 Date de publication en ligne : 15/09/2021 En ligne : https://doi.org/10.1515/jag-2021-0042 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99449
in Journal of applied geodesy > vol 16 n° 1 (January 2022) . - pp 25 - 35[article]Deep learning-based image de-raining using discrete Fourier transformation / Prasen Kumar Sharma in The Visual Computer, vol 37 n° 8 (August 2021)
![]()
[article]
Titre : Deep learning-based image de-raining using discrete Fourier transformation Type de document : Article/Communication Auteurs : Prasen Kumar Sharma, Auteur ; Sathisha Basavaraju, Auteur ; Arijit Sur, Auteur Année de publication : 2021 Article en page(s) : pp 2083 - 2096 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] bruit (théorie du signal)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] décomposition d'image
[Termes IGN] filtrage du bruit
[Termes IGN] pluie
[Termes IGN] transformation de FourierRésumé : (auteur) Single image rain streak removal is a well-explored topic in the field of computer vision. The de-raining problem is modeled as an image decomposition task where a rainy image is decomposed into rain-free background image and rain streek map. Unlike most of the existing de-raining methods, this paper attempts to decompose the rainy image in the frequency domain. The idea is inspired by pseudo-periodic characteristics of the noise signal (here the rain streaks) which leave some traces in the frequency domain, and the same can be utilized to predict the noise signal. In this paper, a deep learning-based rain streak prediction model is proposed which learns in discrete Fourier transform Oppenheim and Schafer (Discrete-Time Signal Processing, Prentice Hall, Upper Saddle River, 1989) domain. To the best of our knowledge, this is the first approach where compressed domain coefficients are directly used as input to a deep convolutional neural network. The proposed model has been tested on publicly available synthetic datasets Fu et al. (in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. https://doi.org/10.1109/CVPR.2017.186, Yang et al. (in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. https://doi.org/10.1109/CVPR.2017.183), Yeh et al. (in: 2015 IEEE International Conference on Consumer Electronics-Taiwan, 2015. https://doi.org/10.1109/ICCE-TW.2015.7216999) and results are found to be comparable with the state of the art methods in the spatial domain. The presented analysis and study have an obvious indication to extend transform domain input to train the deep learning architecture especially image de-noising like problems. Numéro de notice : A2021-597 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-020-01971-w Date de publication en ligne : 16/09/2020 En ligne : https://doi.org/10.1007/s00371-020-01971-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98226
in The Visual Computer > vol 37 n° 8 (August 2021) . - pp 2083 - 2096[article]Impact of the third frequency GNSS pseudorange and carrier phase observations on rapid PPP convergences / Jiang Guo in GPS solutions, vol 25 n° 2 (April 2021)
![]()
[article]
Titre : Impact of the third frequency GNSS pseudorange and carrier phase observations on rapid PPP convergences Type de document : Article/Communication Auteurs : Jiang Guo, Auteur ; Jianghui Geng, Auteur ; Chen Wang, Auteur Année de publication : 2021 Article en page(s) : 12 p. Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] bruit (théorie du signal)
[Termes IGN] fréquence multiple
[Termes IGN] ligne de base
[Termes IGN] mesurage de pseudo-distance
[Termes IGN] modèle fonctionnel
[Termes IGN] modèle stochastique
[Termes IGN] phase
[Termes IGN] positionnement ponctuel précis
[Termes IGN] résolution d'ambiguïté
[Termes IGN] signal BeiDou
[Termes IGN] signal Galileo
[Termes IGN] signal GNSS
[Termes IGN] temps de convergenceRésumé : (Auteur) New GNSS signals have significantly augmented positioning service and promoted algorithmic innovations such as rapid PPP convergence. With the emerging of multifrequency signals, it becomes essential to thoroughly explore the contribution of third frequency pseudorange and carrier phase toward PPP. In this study, we research the role of the third frequency observations on accelerating PPP convergence, commencing from both stochastic and functional models. We first constructed the stochastic model depending on the observation noise and then introduced two uncombined functional models with respect to different inter-frequency bias (IFB) estimation strategies. The double-differenced residuals based on a zero baseline were used to evaluate the signal noises, which were 0.09, 0.07, 0.11, 0.01 and 0.09 m for Galileo E1/E5a/E5b/E5/E6 pseudorange and 0.24, 0.31 and 0.05 m for BeiDou B1/B2/B3. Besides, carrier phase observations E5a/E5/E6/B1I/B3I shared a comparable signal noise of 0.002 m, while the signal noises of E1/E5b/B2I were 0.003 m. Both BeiDou-2/Galileo and Galileo-only float PPP were implemented based on the dataset collected from 25 stations, spanning 30 days. Triple-frequency Galileo PPP achieved convergence successfully in 19.9 min if observations were weighted according to observation precision, showing a comparable performance of dual-frequency PPP. Meanwhile, the convergence time of triple-frequency float PPP was further shortened to 19.2 min when satellite pair IFBs were eliminated by estimating a second satellite clock. While the improvement of triple-frequency float PPP was marginal, triple-frequency PPP-AR using signals E1/E5a/E6 shortened the initialization time of the dual-frequency counterpart by 38%. Moreover, the performance of triple-frequency PPP-AR kept almost unchanged after we excluded the third frequency pseudorange observations. We thus suggest that the contribution of the third frequency to PPP mainly rests on ambiguity resolution, favored by the additional carrier phase observations. Numéro de notice : A2021-090 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-01079-7 Date de publication en ligne : 10/01/2021 En ligne : https://doi.org/10.1007/s10291-020-01079-7 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96875
in GPS solutions > vol 25 n° 2 (April 2021) . - 12 p.[article]Cluster-based empirical tropospheric corrections applied to InSAR time series analysis / Kyle Dennis Murray in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
![]()
[article]
Titre : Cluster-based empirical tropospheric corrections applied to InSAR time series analysis Type de document : Article/Communication Auteurs : Kyle Dennis Murray, Auteur ; Rowena B. Lohman, Auteur ; David P. S. Bekaert, Auteur Année de publication : 2021 Article en page(s) : pp 2204 - 2212 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande C
[Termes IGN] bruit atmosphérique
[Termes IGN] classification par nuées dynamiques
[Termes IGN] déformation de la croute terrestre
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] Mexique
[Termes IGN] retard troposphérique
[Termes IGN] série temporelleRésumé : (Auteur) Interferometric synthetic aperture radar (InSAR) allows for mapping of crustal deformation on land with high spatial resolution and precision in areas with high signal-to-noise ratios. Efforts to obtain precise displacement time series globally, however, are severely limited by radar path delays within the troposphere. The tropospheric delay is integrated along the full path length between the ground and the satellite, resulting in correlations between the interferometric phase and elevation that can vary dramatically in both space and time. We evaluate the performance of spatially variable, empirical removal of phase-elevation dependence within SAR interferograms through the use of the K -means clustering algorithm. We apply this method to both synthetic test data, as well as to C-band Sentinel-1a/b time series acquired over a large area in south-central Mexico along the Pacific coast and inland—an area with a large elevation gradient that is of particular interest to researchers studying tectonic- and anthropogenic-related deformation. We show that the clustering algorithm is able to identify cases where tropospheric properties vary across topographic divides, reducing total root mean square (rms) by an average of 50%, as opposed to a spatially constant phase-elevation correction, which has insignificant error reduction. Our approach also reduces tropospheric noise while preserving test signals in synthetic examples. Finally, we show the average standard deviation of the residuals from the best-fit linear rate decreases from approximately 3 to 1.5 cm, which corresponds to a change in the error on the best-fit linear rate from 0.94 to 0.63 cm/yr. Numéro de notice : A2021-215 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3003271 Date de publication en ligne : 30/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3003271 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97204
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2204 - 2212[article]Denoising Sentinel-1 extra-wide mode cross-polarization images over sea ice / Yan Sun in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
![]()
[article]
Titre : Denoising Sentinel-1 extra-wide mode cross-polarization images over sea ice Type de document : Article/Communication Auteurs : Yan Sun, Auteur ; Xiao-Ming Li, Auteur Année de publication : 2021 Article en page(s) : pp 2116 - 2131 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Austral (océan)
[Termes IGN] bruit thermique
[Termes IGN] étalonnage radiométrique
[Termes IGN] filtrage du bruit
[Termes IGN] glace de mer
[Termes IGN] image Sentinel-SAR
[Termes IGN] image TOPSAR
[Termes IGN] polarisation croisée
[Termes IGN] rapport signal sur bruitRésumé : (Auteur) Sentinel-1 (S1) extra-wide (EW) swath data in cross-polarization (horizontal–vertical, HV or vertical–horizontal, VH) are strongly affected by the scalloping effect and thermal noise, particularly over areas with weak backscattered signals, such as sea surfaces. Although noise vectors in both the azimuth and range directions are provided in the standard S1 EW data for subtraction, the residual thermal noise still significantly affects sea ice detection by the EW data. In this article, we improve the denoising method developed in previous studies to remove the additive noise for the S1 EW data in cross-polarization. Furthermore, we propose a new method for eliminating the residual noise (i.e., multiplicative noise) at the subswath boundaries of the EW data, which cannot be well processed by simply subtracting the reconstructed 2-D noise field. The proposed method of removing both the additive and multiplicative noise was applied to EW HV-polarized images processed using different Instrument Processing Facility (IPF) versions. The results suggest that the proposed algorithm significantly improves the quality of EW HV-polarized images under various sea ice conditions and sea states in the marginal ice zone (MIZ) of the Arctic. This is of great support for the utilization of cross-polarization synthetic aperture radar (SAR) images in wide swaths for intensive sea ice monitoring in polar regions. Numéro de notice : A2021-214 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3005831 Date de publication en ligne : 09/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3005831 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97202
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2116 - 2131[article]G-band radar for humidity and cloud remote sensing / Ken B. Cooper in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkImproving trajectory estimation using 3D city models and kinematic point clouds / Lucas Lucks in Transactions in GIS, Vol 25 n° 1 (February 2021)
PermalinkCharacteristics of seasonal variations and noises of the daily double-difference and PPP solutions / Kamil Maciuk in Journal of applied geodesy, vol 15 n° 1 (January 2021)
PermalinkPermalinkStatistical analysis of vertical land motions and sea level measurements at the coast / Kevin Gobron (2021)
PermalinkTélédétection hyperspectrale pour l’identification et la caractérisation de minéraux industriels / Ronan Rialland (2021)
PermalinkX-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data / Danfeng Hong in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkPrecise point positioning with decimetre accuracy using wide-lane ambiguities and triple-frequency GNSS data / Manoj Deo in Journal of applied geodesy, vol 14 n° 3 (July 2020)
PermalinkPolarimetric SAR calibration and residual error estimation when corner reflectors are unavailable / Lei Shi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
PermalinkSelf-tuning robust adjustment within multivariate regression time series models with vector-autoregressive random errors / Boris Kargoll in Journal of geodesy, vol 94 n° 5 (May 2020)
Permalink