Descripteur
Termes IGN > sciences naturelles > physique > traitement du signal > prétraitement du signal > filtrage du bruit > filtre de Kalman
filtre de KalmanVoir aussi |
Documents disponibles dans cette catégorie (201)



Etendre la recherche sur niveau(x) vers le bas
A sequential Monte Carlo framework for noise filtering in InSAR time series / Mehdi Khaki in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
![]()
[article]
Titre : A sequential Monte Carlo framework for noise filtering in InSAR time series Type de document : Article/Communication Auteurs : Mehdi Khaki, Auteur ; Mick S. Filmer, Auteur ; Will E. Featherstone, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1904 - 1912 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] filtrage du bruit
[Termes IGN] filtrage spatiotemporel
[Termes IGN] filtre adaptatif
[Termes IGN] filtre de Kalman
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle mathématique
[Termes IGN] série temporelleRésumé : (Auteur) This article proposes an alternative filtering technique to improve interferometric synthetic aperture radar (InSAR) time series by reducing residual noise while retaining the ground deformation signal. To this end, for the first time, a data-driven approach is introduced, which is based on Takens’s method within the sequential Monte Carlo framework, allowing for a model-free approach to filter noisy data. Both a Kalman-based filter and a particle filter (PF) are applied within this framework to investigate their impact on retrieving the signals. More specifically, PF and particle smoother [PaSm; to avoid confusion with persistent scatterers (PSs)] are tested for their ability to deal with non-Gaussian noise. A synthetic test based on simulated InSAR time series, as well as a real test, is designed to investigate the capability of the proposed approach compared with the spatiotemporal filtering of InSAR time series. Results indicate that PFs and more specifically PaSm perform better than other applied methods, as indicated by reduced errors in both tests. Two other variants of PF and adaptive unscented Kalman filter (AUKF) are presented and are found to be able to perform similar to PaSm but with reduced computation time. This article suggests that PFs tested here could be applied in InSAR processing chains. Numéro de notice : A2020-091 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2950353 Date de publication en ligne : 26/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2950353 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94665
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1904 - 1912[article]Smoothing and predicting celestial pole offsets using a Kalman filter and smoother / Jolanta Nastula in Journal of geodesy, Vol 94 n°3 (March 2020)
![]()
[article]
Titre : Smoothing and predicting celestial pole offsets using a Kalman filter and smoother Type de document : Article/Communication Auteurs : Jolanta Nastula, Auteur ; T. Mike Chin,, Auteur ; Richard S. Gross, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] filtre de Kalman
[Termes IGN] International Earth Rotation Service
[Termes IGN] lissage de données
[Termes IGN] mission spatiale
[Termes IGN] mouvement du pôle
[Termes IGN] nutation
[Termes IGN] orientation de la Terre
[Termes IGN] précession
[Termes IGN] radar JPL
[Termes IGN] rotation de la Terre
[Termes IGN] série temporelleRésumé : (auteur) It has been recognized since the early days of interplanetary spaceflight that accurate navigation requires taking into account changes in the Earth’s rotation. In the 1960s, tracking anomalies during the Ranger VII and VIII lunar missions were traced to errors in the Earth orientation parameters. As a result, Earth orientation calibration methods were improved to support the Mariner IV and V planetary missions. Today, accurate Earth orientation parameters are used to track and navigate every interplanetary spaceflight mission. The approach taken at JPL (Jet Propulsion Laboratory) to provide the interplanetary spacecraft tracking and navigation teams with the UT1 and polar motion parameters that they need is based upon the use of a Kalman filter to combine past measurements of these parameters and predict their future evolution. A model was then used to provide the nutation/precession components of the Earth’s orientation. As a result, variations caused by the free core nutation were not taken into account. But for the highest accuracy, these variations must be considered. So JPL recently developed an approach based upon the use of a Kalman filter and smoother to provide smoothed and predicted celestial pole offsets (CPOs) to the interplanetary spacecraft tracking and navigation teams. The approach used at JPL to do this and an evaluation of the accuracy of the predicted CPOs is given here. For assessing the quality of JPL’s nutation predictions, we compare the time series of dX, dY provided by JPL with the predictions obtained from the IERS Rapid Service/Prediction Centre. Our results confirmed that the approach recently developed by JPL can be used for the successful nutation prediction. In particular, we show that after 90 days of prediction, the estimated errors are 43% lower for dX and 33% lower for dY than in the case of the official IERS products, and an average improvement is 19% and 22% for dX and dY, respectively. Numéro de notice : A2020-156 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01349-9 Date de publication en ligne : 15/02/2020 En ligne : https://doi.org/10.1007/s00190-020-01349-9 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94806
in Journal of geodesy > Vol 94 n°3 (March 2020)[article]Assessment of inner reliability in the Gauss-Helmert model / Andreas Ettlinger in Journal of applied geodesy, vol 14 n° 1 (January 2020)
![]()
[article]
Titre : Assessment of inner reliability in the Gauss-Helmert model Type de document : Article/Communication Auteurs : Andreas Ettlinger, Auteur ; Hans Neuner, Auteur Année de publication : 2020 Article en page(s) : pp 13 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie
[Termes IGN] coefficient de corrélation
[Termes IGN] compensation par moindres carrés
[Termes IGN] détection d'erreur
[Termes IGN] erreur systématique
[Termes IGN] fiabilité des données
[Termes IGN] filtre de Kalman
[Termes IGN] modèle d'erreur
[Termes IGN] modèle de Gauss-Helmert
[Termes IGN] valeur aberranteRésumé : (auteur) In this contribution, the minimum detectable bias (MDB) as well as the statistical tests to identify disturbed observations are introduced for the Gauss-Helmert model. Especially, if the observations are uncorrelated, these quantities will have the same structure as in the Gauss-Markov model, where the redundancy numbers play a key role. All the derivations are based on one-dimensional and additive observation errors respectively offsets which are modeled as additional parameters to be estimated. The formulas to compute these additional parameters with the corresponding variances are also derived in this contribution. The numerical examples of plane fitting and yaw computation show, that the MDB is also in the GHM an appropriate measure to analyze the ability of an implemented least-squares algorithm to detect if outliers are present. Two sources negatively influencing detectability are identified: columns close to the zero vector in the observation matrix B and sub-optimal configuration in the design matrix A. Even if these issues can be excluded, it can be difficult to identify the correct observation as being erroneous. Therefore, the correlation coefficients between two test values are derived and analyzed. Together with the MDB these correlation coefficients are an useful tool to assess the inner reliability – and therefore the detection and identification of outliers – in the Gauss-Helmert model. Numéro de notice : A2020-040 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jag-2019-0013 Date de publication en ligne : 19/10/2019 En ligne : https://doi.org/10.1515/jag-2019-0013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94511
in Journal of applied geodesy > vol 14 n° 1 (January 2020) . - pp 13 - 28[article]INS/GNSS integration using recurrent fuzzy wavelet neural networks / Parisa Doostdar in GPS solutions, vol 24 n° 1 (January 2020)
![]()
[article]
Titre : INS/GNSS integration using recurrent fuzzy wavelet neural networks Type de document : Article/Communication Auteurs : Parisa Doostdar, Auteur ; Jafar Keighobadi, Auteur ; Mohammad Ali Hamed, Auteur Année de publication : 2020 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] classification floue
[Termes IGN] couplage GNSS-INS
[Termes IGN] données GNSS
[Termes IGN] filtre de Kalman
[Termes IGN] interruption du signal
[Termes IGN] ondelette
[Termes IGN] réseau neuronal artificiel
[Termes IGN] réseau neuronal récurrent
[Termes IGN] vitesse
[Vedettes matières IGN] Traitement de données GNSSRésumé : (Auteur) In recent years, aided navigation systems through combining inertial navigation system (INS) with global navigation satellite system (GNSS) have been widely applied to enhance the position, velocity, and attitude information of autonomous vehicles. In order to gain the accuracy of the aided INS/GNSS in GNSS gap intervals, a heuristic neural network structure based on the recurrent fuzzy wavelet neural network (RFWNN) is applicable for INS velocity and position error compensation purpose. During frequent access to GNSS data, the RFWNN should be trained as a highly precise prediction model equipped with the Kalman filter algorithm. Therefore, the INS velocity and position error data are obtainable along with the lost intervals of GNSS signals. For performance assessment of the proposed RFWNN-aided INS/GNSS, real flight test data of a small commercial unmanned aerial vehicle (UAV) were conducted. A comparison of test results shows that the proposed NN algorithm could efficiently provide high-accuracy corrections on the INS velocity and position information during GNSS outages. Numéro de notice : A2020-019 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-019-0942-z Date de publication en ligne : 23/12/2019 En ligne : https://doi.org/10.1007/s10291-019-0942-z Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94458
in GPS solutions > vol 24 n° 1 (January 2020)[article]
Titre : Multi-sensor information fusion Type de document : Monographie Auteurs : Xue-Bo Jin, Éditeur scientifique ; Yuan Gao, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2020 Importance : 602 p. ISBN/ISSN/EAN : 978-3-03928-303-3 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] apprentissage profond
[Termes IGN] classification semi-dirigée
[Termes IGN] filtre de Kalman
[Termes IGN] fusion de données multisource
[Termes IGN] série temporelle
[Termes IGN] temps réelRésumé : (Editeur) This book includes papers from the section “Multisensor Information Fusion”, from Sensors between 2018 to 2019. It focuses on the latest research results of current multi-sensor fusion technologies and represents the latest research trends, including traditional information fusion technologies, estimation and filtering, and the latest research, artificial intelligence involving deep learning. Numéro de notice : 26505 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Recueil / ouvrage collectif DOI : 10.3390/books978-3-03928-303-3 En ligne : https://doi.org/10.3390/books978-3-03928-303-3 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97083 Smoothing algorithms for navigation, localisation and mapping based on high-grade inertial sensors / Paul Chauchat (2020)
PermalinkKalman-filter-based undifferenced cycle slip estimation in real-time precise point positioning / Pan Li in GPS solutions, vol 23 n° 4 (October 2019)
PermalinkDecomposition of geodetic time series: A combined simulated annealing algorithm and Kalman filter approach / Feng Ming in Advances in space research, vol 64 n°5 (1 September 2019)
PermalinkRobust M–M unscented Kalman filtering for GPS/IMU navigation / Cheng Yang in Journal of geodesy, vol 93 n° 8 (August 2019)
PermalinkOn the detectability of mis-modeled biases in the network-derived positioning corrections and their user impact / Amir Khodabandeh in GPS solutions, vol 23 n° 3 (July 2019)
PermalinkReal-time sea-level monitoring using Kalman filtering of GNSS-R data / Joakim Strandberg in GPS solutions, vol 23 n° 3 (July 2019)
PermalinkAn improved robust Kalman filtering strategy for GNSS kinematic positioning considering small cycle slips / Wanke Liu in Advances in space research, vol 63 n° 9 (1 May 2019)
PermalinkReal-time GPS satellite orbit and clock estimation based on OpenMP / Kaifa Kuang in Advances in space research, vol 63 n° 8 (15 April 2019)
PermalinkBIM-Tracker: A model-based visual tracking approach for indoor localisation using a 3D building model / Debaditya Acharya in ISPRS Journal of photogrammetry and remote sensing, vol 150 (April 2019)
PermalinkOn the assimilation of absolute geodetic dynamic topography in a global ocean model: impact on the deep ocean state / Alexey Androsov in Journal of geodesy, vol 93 n° 2 (February 2019)
Permalink