Descripteur
Termes IGN > sciences naturelles > physique > traitement du signal > prétraitement du signal > filtrage du bruit > filtre de Kalman
filtre de KalmanVoir aussi |
Documents disponibles dans cette catégorie (201)



Etendre la recherche sur niveau(x) vers le bas
Improving the modeling of the atmospheric delay in the data analysis of the Intensive VLBI sessions and the impact on the UT1 estimates / Tobias Nilsson in Journal of geodesy, vol 91 n° 7 (July 2017)
![]()
[article]
Titre : Improving the modeling of the atmospheric delay in the data analysis of the Intensive VLBI sessions and the impact on the UT1 estimates Type de document : Article/Communication Auteurs : Tobias Nilsson, Auteur ; Benedikt Soja, Auteur ; Kyriakos Balidakis, Auteur ; Maria Karbon, Auteur ; Robert Heinkelmann, Auteur ; Zhiguo Deng, Auteur ; Harald Schuh, Auteur Année de publication : 2017 Article en page(s) : pp 857 - 866 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] analyse de données
[Termes IGN] filtre de Kalman
[Termes IGN] gradient de troposphère
[Termes IGN] interférométrie à très grande base
[Termes IGN] longueur du jour
[Termes IGN] modèle atmosphérique
[Termes IGN] retard troposphérique zénithal
[Termes IGN] temps universelRésumé : (Auteur) The very long baseline interferometry (VLBI) Intensive sessions are typically 1-h and single-baseline VLBI sessions, specifically designed to yield low-latency estimates of UT1-UTC. In this work, we investigate what accuracy is obtained from these sessions and how it can be improved. In particular, we study the modeling of the troposphere in the data analysis. The impact of including external information on the zenith wet delays (ZWD) and tropospheric gradients from GPS or numerical weather prediction models is studied. Additionally, we test estimating tropospheric gradients in the data analysis, which is normally not done. To evaluate the results, we compared the UT1-UTC values from the Intensives to those from simultaneous 24-h VLBI session. Furthermore, we calculated length of day (LOD) estimates using the UT1-UTC values from consecutive Intensives and compared these to the LOD estimated by GPS. We find that there is not much benefit in using external ZWD; however, including external information on the gradients improves the agreement with the reference data. If gradients are estimated in the data analysis, and appropriate constraints are applied, the WRMS difference w.r.t. UT1-UTC from 24-h sessions is reduced by 5% and the WRMS difference w.r.t. the LOD from GPS by up to 12%. The best agreement between Intensives and the reference time series is obtained when using both external gradients from GPS and additionally estimating gradients in the data analysis. Numéro de notice : A2017-298 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-016-0985-7 En ligne : http://doi.org/10.1007/s00190-016-0985-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85333
in Journal of geodesy > vol 91 n° 7 (July 2017) . - pp 857 - 866[article]I’m walking here! Checking the accuracy of an inertial-based pedestrian navigation system with a drone / Marcin Uradzinski in GPS world, vol 28 n° 6 (June 2017)
[article]
Titre : I’m walking here! Checking the accuracy of an inertial-based pedestrian navigation system with a drone Type de document : Article/Communication Auteurs : Marcin Uradzinski, Auteur ; Hang Guo, Auteur ; Clifford Mugnier, Auteur Année de publication : 2017 Article en page(s) : pp 58 - 64 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] drone
[Termes IGN] filtre de Kalman
[Termes IGN] navigation à l'estime
[Termes IGN] navigation pédestre
[Termes IGN] piéton
[Termes IGN] positionnement en intérieurRésumé : (Auteur) Satellite navigation systems have achieved great success in personal positioning applications. Nowadays, GNSS is an essential tool for outdoor navigation, but locating a user’s position in degraded and denied indoor environments is still a challenging task. During the past decade, methodologies have been proposed based on inertial sensors for determining a person’s location to solve this problem. One such solution is a personal pedestrian dead reckoning (PDR) system, which helps in obtaining a seamless indoor/outdoor position. Built-in sensors measure the acceleration to determine pace count and estimate the pace length to predict position with heading information coming from angular sensors such as magnetometers or gyroscopes. PDR positioning solutions find many applications in security monitoring, personal services, navigation in shopping centers and hospitals and for guiding blind pedestrians. Several dead-reckoning navigation algorithms for use with inertial measurement units (IMUs) have been proposed. However, these solutions are very sensitive to the alignment of the sensor units, the inherent instrumental errors, and disturbances from the ambient environment - problems that cause accuracy to decrease over time. In such situations, additional sensors are often used together with an IMU, such as ZigBee radio beacons with position estimated from received signal strength. In this article, we present a PDR indoor positioning system we designed, tested and analyzed. It is based on the pace detection of a foot-mounted IMU, with the use of extended Kalman filter (EKF) algorithms to estimate the errors accumulated by the sensors. Numéro de notice : A2017-294 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85332
in GPS world > vol 28 n° 6 (June 2017) . - pp 58 - 64[article]
Titre : Instantaneous estimation of attitude from GNSS Type de document : Thèse/HDR Auteurs : Hendy Fitrian Suhandri, Auteur ; Alfred Kleusberg, Directeur de thèse ; Hasanuddin Zainal Abidin, Directeur de thèse Editeur : Stuttgart : University of Stuttgart Année de publication : 2017 Importance : 143 p. Format : 21 x 30 cm Note générale : Bibliographie
thesis accepted by the Faculty of Aerospace Engineering and Geodesy of the University of Stuttgart in partial fulfilment of the requirements for the degree of Doctor of Engineering Sciences (Dr.-Ing.)Langues : Anglais (eng) Descripteur : [Termes IGN] ambiguïté entière
[Termes IGN] angle d'Euler
[Termes IGN] double différence
[Termes IGN] filtre de Kalman
[Termes IGN] méthode des moindres carrés
[Termes IGN] modèle stochastique
[Termes IGN] orientation de véhicule
[Termes IGN] positionnement cinématique
[Termes IGN] positionnement par GNSS
[Termes IGN] récepteur GNSS
[Termes IGN] simple différence
[Vedettes matières IGN] Traitement de données GNSSRésumé : (auteur) The use of the Global Navigation Satellite System (GNSS) is widely spread from position determination to attitude determination of a platform in space. This system offers time invariant estimation position. Another thing that can be an advantage is that the flexibility to operate the GNSS receiver variants, from the low-cost until the high-performance GNSS receivers. In terms of attitude determination application at least three receivers are required to determine three spatial axes, where the cost-effective GNSS attitude determination systems can be constructed with today’s receiver technology. At the moment, however, algorithms are lacking which are fast and efficient enough to estimate the position angles without delay. For this reason, the present work deals with the development of algorithms for the attitude determination in space of a platform under the help of the "GNSS" Global Positioning System (GPS). The investigation through this work is classified into three sequential parts: The first part is the estimation of the optimal configuration of baseline array as well as the estimation of the integer ambiguity of carrier phase differences. The estimated integer ambiguity is then used to estimate the high precision baseline coordinates. The second part is to estimate the attitude of the platform in space by means of quaternion using batch process, and the last part is to improve the algorithm using a recursive algorithm for the kinematic application purpose. The precise attitude determination about three spatial axes is possible if at least three GNSS receivers with fixed baselines are used in particular array configurations. Assuming that the basic lengths of the baselines are known a priori, the attitude angles can be calculated via the combination of carrier phase and pseudorange observations. Since the carrier of the GPS signal is propagated in short-wave form, the measured phase differences are ambiguous. The multiples of the GPS signal phases together with the baseline lengths are therefore estimated and improved in a first step with the aid of the a priori baseline lengths information. The multiple-baseline float solution estimation method is used. However, the approach does not provide optimal results. Therefore, an alternative algorithm for the float solution is presented, which estimates the float solution by using the socalled the gradient based iterative method of the least-squares. It shows that method is able to give convergent estimate parameter. It is also shown here that the proposed method outperforms the conventional iterative least-squares in terms of iteration number and computational time. For instantaneous applications, the Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) method is not optimal for fixing the integer multiples of the carrier phase differences for several baseline lengths. In addition, this method requires a high computational effort as soon as a larger number of baseline lines enter into the calculation. An improvement in this work is utilising the partial LAMBDA method, which only uses a subset of the integer multiples to be determined. This algorithm improves the determination of integer multiples and precise calculation of the baseline lengths. The advantages of this algorithm are discussed, and it is empirically demonstrated that the ambiguities are better resolved. Furthermore, the estimation of the attitude angles with the aid of quaternions is theoretically improved and analysed. Two processing strategies are investigated: the least-squares method and the Kalman Filter (KF) method. For the static case, the least-squares is applied and tested. Simulations show that the developed gradient based iterative method of the least-squares provides better estimates than the conventional adjustment methods. It is also shown that the number of iterations required is less and the computational time is reduced. This algorithm is not useful for kinematic applications where a fast sequence of results is required. A modified Extended Kalman Filter (EKF)-Like algorithm is used for kinematic applications. Experiments show that with this algorithm more stable quaternions can be calculated with fewer outliers than when they are determined by the least-squares method. All newly developed algorithms are theoretically analysed and subjected to extensive simulations and experimental kinematic tests in the field. Note de contenu : Introduction
1 - General mathematical model of GNSS positioning
2 - Multi-baseline GNSS estimation method
3 - GNSS based attitude determination
4 - Recursive attitude determination
5 - Experimental result of static and kinematic tests
6 - Summary, conclusion and future work suggestionNuméro de notice : 21574 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse étrangère Note de thèse : Doctor thesis : Engineering sciences : Stuttgart : 2017 DOI : 10.18419/opus-9239 En ligne : http://dx.doi.org/10.18419/opus-9239 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90576
Titre : Springer handbook of Global Navigation Satellite Systems Type de document : Guide/Manuel Auteurs : Peter J.G. Teunissen, Éditeur scientifique ; Oliver Montenbruck, Éditeur scientifique Editeur : Springer International Publishing Année de publication : 2017 Importance : 1327 Format : 20 x 27 cm ISBN/ISSN/EAN : 978-3-319-42926-7 Note générale : Bibliographie et glossaire Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] antenne GNSS
[Termes IGN] BeiDou
[Termes IGN] couplage GNSS-INS
[Termes IGN] filtre de Kalman
[Termes IGN] Galileo
[Termes IGN] géodynamique
[Termes IGN] Global Navigation Satellite System
[Termes IGN] Global Orbitography Navigation Satellite System
[Termes IGN] horloge atomique
[Termes IGN] interférence
[Termes IGN] ionosphère
[Termes IGN] méthode des moindres carrés
[Termes IGN] orbitographie
[Termes IGN] orientation
[Termes IGN] positionnement différentiel
[Termes IGN] positionnement ponctuel précis
[Termes IGN] précision du positionnement
[Termes IGN] récepteur GNSS
[Termes IGN] réflectométrie par GNSS
[Termes IGN] résolution d'ambiguïté
[Termes IGN] signal GNSS
[Termes IGN] système d'extension
[Termes IGN] temps universel
[Termes IGN] traitement du signal
[Termes IGN] trajet multipleRésumé : (Editeur) This Handbook presents a complete and rigorous overview of the fundamentals, methods and applications of the multidisciplinary field of Global Navigation Satellite Systems (GNSS), providing an exhaustive, one-stop reference work and a state-of-the-art description of GNSS as a key technology for science and society at large. All global and regional satellite navigation systems, both those currently in operation and those under development (GPS, GLONASS, Galileo, BeiDou, QZSS, IRNSS/NAVIC, SBAS), are examined in detail. The functional principles of receivers and antennas, as well as the advanced algorithms and models for GNSS parameter estimation, are rigorously discussed. The book covers the broad and diverse range of land, marine, air and space applications, from everyday GNSS to high-precision scientific applications and provides detailed descriptions of the most widely used GNSS format standards, covering receiver formats as well as IGS product and meta-data formats. The full coverage of the field of GNSS is presented in seven parts, from its fundamentals, through the treatment of global and regional navigation satellite systems, of receivers and antennas, and of algorithms and models, up to the broad and diverse range of applications in the areas of positioning and navigation, surveying, geodesy and geodynamics, and remote sensing and timing. Each chapter is written by international experts and amply illustrated with figures and photographs, making the book an invaluable resource for scientists, engineers, students and institutions alike. Note de contenu :
PRINCIPLES OF GNSS
1. Introduction to GNSS
2. Time and reference systems
3. Satellite orbits and attitude
4. Signals and modulation
5. Clocks
6. Atmospheric signal propagation
SATELLITE NAVIGATION SYSTEMS
7. The Global Positioning System (GPS)
8. GLONASS
9. Galileo
10. Chinese navigation satellite systems
11. Regional systems
12. Satellite based augmentation systems
GNSS RECEIVERS AND ANTENNAS
13. Receiver architecture
14. Signal processing
15. Multipath
16. Interference
17. Antennas
18. Simulators and test equipment
GNSS algorithms and models
19. Basic observation equations
20. Combinations of observations
21. Positioning model
22. Least-squares estimation and Kalman filtering
23. Carrier phase integer ambiguity resolution
24. Batch and recursive model validation
POSITIONING AND NAVIGATION
25. Precise point positioning
26. Differential positioning
27. Attitude determination
28. GNSS/INS integration
29. Land and maritime applications
30. Aviation applications
31. Ground based augmentation systems
32. Space applications
SURVEYING, GEODESY AND GEODYNAMICS
33. The international GNSS service
34. Orbit and clock product generation
35. Surveying
36. Geodesy
37. Geodynamics
GNSS REMOTE SENSING AND TIMING
38. Monitoring of the neutral atmosphere
39. Ionosphere monitoring
40. Reflectometry
41. GNSS time and frequency transfer
Annex A: Data formats
Annex B: GNSS parametersNuméro de notice : 22723 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Manuel Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85346 ContientRéservation
Réserver ce documentExemplaires (4)
Code-barres Cote Support Localisation Section Disponibilité 22723-01 30.61 Livre Centre de documentation Géodésie Disponible 22723-04 DEP-EXG Livre Equipe Géodésie Dépôt en unité Exclu du prêt 22723-03 DEP-ELG Livre Marne-la-Vallée Dépôt en unité Exclu du prêt 22723-02 DEP-PMC Livre Saint-Mandé Dépôt en unité Exclu du prêt Télédétection pour l'observation des surfaces continentales, Volume 2. Observation des surfaces continentales par télédétection micro-onde / Nicolas Baghdadi (2017)
Titre de série : Télédétection pour l'observation des surfaces continentales, Volume 2 Titre : Observation des surfaces continentales par télédétection micro-onde : techniques et méthodes Type de document : Monographie Auteurs : Nicolas Baghdadi, Éditeur scientifique ; Mehrez Zribi, Éditeur scientifique Editeur : Londres : ISTE Editions Année de publication : 2017 Collection : Collection système Terre - Environnement Importance : 420 p. Format : 15 x 23 cm ISBN/ISSN/EAN : 978-1-78405-157-0 Note générale : Bibliographie, glossaire Langues : Français (fre) Descripteur : [Vedettes matières IGN] Télédétection
[Termes IGN] altimétrie satellitaire par radar
[Termes IGN] assimilation des données
[Termes IGN] données GRACE
[Termes IGN] filtre de Kalman
[Termes IGN] GRACE
[Termes IGN] image radar moirée
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] micro-onde
[Termes IGN] modèle d'erreur
[Termes IGN] modèle numérique de terrain
[Termes IGN] polarimétrie radar
[Termes IGN] réflectométrie par GNSS
[Termes IGN] télédétection en hyperfréquence
[Termes IGN] tomographie radar
[Termes IGN] transfert radiatifIndex. décimale : 35.22 Télédétection en hyperfréquence - Traitement d'image radar Résumé : (Editeur) Second volume d'une série de six ouvrages, ce livre présente les principes physiques et techniques de différents types de capteurs micro-ondes : les radars à synthèse d’ouverture (RSO), l’altimétrie satellitaire radar, les micro-ondes passives, la gravimétrie spatiale, la réflectométrie GNSS (Global Navigation Satellite System). L’ouvrage aborde également la reconstruction des modèles numériques de terrain à partir de mesures RSO et propose une description des méthodes d’assimilation des données spatiales dans les modèles. Note de contenu : Introduction
1. Imagerie radar à synthèse d’ouverture
2. Imagerie SAR à modes de diversité cohérents : polarimétrie, interférométrie et tomographie SAR
3. Les principes de la reconstruction d’un MNT à partir d’images RSO
4. Principes de l’altimétrie satellitaire radar pour les applications sur les eaux continentales
5. Micro-ondes passives à basses fréquences : principes, transfert radiatif, physique de la mesure
6. La mission de gravimétrie spatiale GRACE : instruments et principe de fonctionnement
7. Le système satellite de navigation global réfléchi (GNSS-R) : de la théorie à la pratique
8. Assimilation de données spatialesNuméro de notice : 22753B Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Recueil / ouvrage collectif Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91695 Voir aussi
- Télédétection pour l'observation des surfaces continentales, Volume 1. Observation des surfaces continentales par télédétection optique / Nicolas Baghdadi (2017)
- Télédétection pour l'observation des surfaces continentales, Volume 4. Observation des surfaces continentales par télédétection 2 / Nicolas Baghdadi (2017)
- Télédétection pour l'observation des surfaces continentales, Volume 5. Observation des surfaces continentales par télédétection 3 / Nicolas Baghdadi (2017)
- Télédétection pour l'observation des surfaces continentales, Volume 3. Observation des surfaces continentales par télédétection 1 / Nicolas Baghdadi (2017)
Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22753-01B 35.22 Livre Centre de documentation Télédétection Disponible Determination of a terrestrial reference frame via Kalman filtering of very long baseline interferometry data / Benedikt Soja in Journal of geodesy, vol 90 n° 12 (December 2016)
PermalinkAn approach for estimating time-variable rates from geodetic time series / Olga Didova in Journal of geodesy, vol 90 n° 11 (November 2016)
PermalinkAssimilation of SMOS retrievals in the land information system / Clay B. Blankenship in IEEE Transactions on geoscience and remote sensing, vol 54 n° 11 (November 2016)
PermalinkRecursive orthogonal projection-based simplex growing algorithm / Hsiao-Chi Li in IEEE Transactions on geoscience and remote sensing, vol 54 n° 7 (July 2016)
PermalinkA systematic impact assessment of GRACE error correlation on data assimilation in hydrological models / Maike Schumacher in Journal of geodesy, vol 90 n° 6 (June 2016)
PermalinkPermalinkAdaptive GPS/INS integration for relative navigation / Je Young Lee in GPS solutions, vol 20 n° 1 (January 2016)
PermalinkPermalinkFusion of space-borne multi-baseline and multi-frequency interferometric results based on extended Kalman filter to generate high quality DEMs / Xiaojie Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 111 (January 2016)
PermalinkImproving MEMS-IMU/GPS integrated systems for land vehicle navigation applications / S. Sasani in GPS solutions, vol 20 n° 1 (January 2016)
Permalink