Descripteur
Termes descripteurs IGN > imagerie > image numérique > image optique > image multibande > image hyperspectrale
image hyperspectraleVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Correntropy-based spatial-spectral robust sparsity-regularized hyperspectral unmixing / Xiaorun Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
![]()
[article]
Titre : Correntropy-based spatial-spectral robust sparsity-regularized hyperspectral unmixing Type de document : Article/Communication Auteurs : Xiaorun Li, Auteur ; Risheng Huang, Auteur ; Liaolying Zhao, Auteur Année de publication : 2021 Article en page(s) : pp 1453 - 1471 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse des mélanges spectraux
[Termes descripteurs IGN] corrélation
[Termes descripteurs IGN] entropie
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] méthode robuste
[Termes descripteurs IGN] signature spectraleRésumé : (auteur) Hyperspectral unmixing (HU) is a crucial technique for exploiting remotely sensed hyperspectral data, which aims at estimating a set of spectral signatures, called endmembers and their corresponding proportions, called abundances. The performance of HU is often seriously degraded by various kinds of noise existing in hyperspectral images (HSIs). Most of existing robust HU methods are based on the assumption that noise or outlier only exists in one kind of formulation, e.g., band noise or pixel noise. However, in real-world applications, HSIs are unavoidably corrupted by noisy bands and noisy pixels simultaneously, which require robust HU in both the spatial dimension and spectral dimension. Meanwhile, the sparsity of abundances is an inherent property of HSIs and different regions in an HSI may possess various sparsity levels across locations. This article proposes a correntropy-based spatial-spectral robust sparsity-regularized unmixing model to achieve 2-D robustness and adaptive weighted sparsity constraint for abundances simultaneously. The updated rules of the proposed model are efficient to be implemented and carried out by a half-quadratic technique. The experimental results obtained by both synthetic and real hyperspectral data demonstrate the superiority of the proposed method compared to the state-of-the-art methods. Numéro de notice : A2021-116 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2999936 date de publication en ligne : 16/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2999936 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96930
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 1453 - 1471[article]Hyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition / Yuanyang Bu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : Hyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition Type de document : Article/Communication Auteurs : Yuanyang Bu, Auteur ; Yong-Qiang Zhao, Auteur ; Jize Xue, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 648 - 662 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] calcul tensoriel
[Termes descripteurs IGN] équation de Laplace
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] graphe
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] optimisation (mathématiques)
[Termes descripteurs IGN] tenseur
[Termes descripteurs IGN] théorie des variétésRésumé : (auteur) We propose a novel graph Laplacian-guided coupled tensor decomposition (gLGCTD) model for fusion of hyperspectral image (HSI) and multispectral image (MSI) for spatial and spectral resolution enhancements. The coupled Tucker decomposition is employed to capture the global interdependencies across the different modes to fully exploit the intrinsic global spatial–spectral information. To preserve local characteristics, the complementary submanifold structures embedded in high-resolution (HR)-HSI are encoded by the graph Laplacian regularizations. The global spatial–spectral information captured by the coupled Tucker decomposition and the local submanifold structures are incorporated into a unified framework. The gLGCTD fusion framework is solved by a hybrid framework between the proximal alternating optimization (PAO) and the alternating direction method of multipliers (ADMM). Experimental results on both synthetic and real data sets demonstrate that the gLGCTD fusion method is superior to state-of-the-art fusion methods with a more accurate reconstruction of the HR-HSI. Numéro de notice : A2021-036 Affiliation des auteurs : non IGN Thématique : IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2992788 date de publication en ligne : 18/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2992788 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96738
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 648 - 662[article]Hyperspectral band selection via optimal neighborhood reconstruction / Qi Wang in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
![]()
[article]
Titre : Hyperspectral band selection via optimal neighborhood reconstruction Type de document : Article/Communication Auteurs : Qi Wang, Auteur ; Fahong Zhang, Auteur ; Xuelong Li, Auteur Année de publication : 2020 Article en page(s) : pp 8465 - 8476 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse combinatoire (maths)
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] optimisation (mathématiques)
[Termes descripteurs IGN] reconstruction d'image
[Termes descripteurs IGN] réductionRésumé : (auteur) Band selection is one of the most important technique in the reduction of hyperspectral image (HSI). Different from traditional feature selection problem, an important characteristic of it is that there is usually strong correlation between neighboring bands, that is, bands with close indexes. Aiming to fully exploit this prior information, a novel band selection method called optimal neighborhood reconstruction (ONR) is proposed. In ONR, band selection is considered as a combinatorial optimization problem. It evaluates a band combination by assessing its ability to reconstruct the original data, and applies a noise reducer to minimize the influence of noisy bands. Instead of using some approximate algorithms, ONR exploits a recurrence relation that underlies the optimization target to obtain the optimal solution in an efficient way. Besides, we develop a parameter selection approach to automatically determine the parameter of ONR, ensuring it is adaptable to different data sets. In experiments, ONR is compared with some state-of-the-art methods on six HSI data sets. The results demonstrate that ONR is more effective and robust than the others in most of the cases. Numéro de notice : A2020-742 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2987955 date de publication en ligne : 29/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2987955 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96372
in IEEE Transactions on geoscience and remote sensing > Vol 58 n° 12 (December 2020) . - pp 8465 - 8476[article]Nonlocal graph convolutional networks for hyperspectral image classification / Lichao Mou in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
![]()
[article]
Titre : Nonlocal graph convolutional networks for hyperspectral image classification Type de document : Article/Communication Auteurs : Lichao Mou, Auteur ; Xiaoqiang Lu, Auteur ; Xuelong Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 8246 - 8257 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] classification semi-dirigée
[Termes descripteurs IGN] entropie
[Termes descripteurs IGN] graphe
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] réseau neuronal récurrentRésumé : (auteur) Over the past few years making use of deep networks, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs), classifying hyperspectral images has progressed significantly and gained increasing attention. In spite of being successful, these networks need an adequate supply of labeled training instances for supervised learning, which, however, is quite costly to collect. On the other hand, unlabeled data can be accessed in almost arbitrary amounts. Hence it would be conceptually of great interest to explore networks that are able to exploit labeled and unlabeled data simultaneously for hyperspectral image classification. In this article, we propose a novel graph-based semisupervised network called nonlocal graph convolutional network (nonlocal GCN). Unlike existing CNNs and RNNs that receive pixels or patches of a hyperspectral image as inputs, this network takes the whole image (including both labeled and unlabeled data) in. More specifically, a nonlocal graph is first calculated. Given this graph representation, a couple of graph convolutional layers are used to extract features. Finally, the semisupervised learning of the network is done by using a cross-entropy error over all labeled instances. Note that the nonlocal GCN is end-to-end trainable. We demonstrate in extensive experiments that compared with state-of-the-art spectral classifiers and spectral–spatial classification networks, the nonlocal GCN is able to offer competitive results and high-quality classification maps (with fine boundaries and without noisy scattered points of misclassification). Numéro de notice : A2020-739 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2973363 date de publication en ligne : 12/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2973363 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96365
in IEEE Transactions on geoscience and remote sensing > Vol 58 n° 12 (December 2020) . - pp 8246 - 8257[article]Learning-based hyperspectral imagery compression through generative neural networks / Chubo Deng in Remote sensing, vol 12 n° 21 (November 2020)
![]()
[article]
Titre : Learning-based hyperspectral imagery compression through generative neural networks Type de document : Article/Communication Auteurs : Chubo Deng, Auteur ; Yi Cen, Auteur ; Lifu Zhang, Auteur Année de publication : 2020 Article en page(s) : n° 3657 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse en composantes principales
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] compression d'image
[Termes descripteurs IGN] compression par ondelettes
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] réseau neuronal artificielRésumé : (auteur) Hyperspectral images (HSIs), which obtain abundant spectral information for narrow spectral bands (no wider than 10 nm), have greatly improved our ability to qualitatively and quantitatively sense the Earth. Since HSIs are collected by high-resolution instruments over a very large number of wavelengths, the data generated by such sensors is enormous, and the amount of data continues to grow, HSI compression technique will play more crucial role in this trend. The classical method for HSI compression is through compression and reconstruction methods such as three-dimensional wavelet-based techniques or the principle component analysis (PCA) transform. In this paper, we provide an alternative approach for HSI compression via a generative neural network (GNN), which learns the probability distribution of the real data from a random latent code. This is achieved by defining a family of densities and finding the one minimizing the distance between this family and the real data distribution. Then, the well-trained neural network is a representation of the HSI, and the compression ratio is determined by the complexity of the GNN. Moreover, the latent code can be encrypted by embedding a digit with a random distribution, which makes the code confidential. Experimental examples are presented to demonstrate the potential of the GNN to solve image compression problems in the field of HSI. Compared with other algorithms, it has better performance at high compression ratio, and there is still much room left for improvements along with the fast development of deep-learning techniques. Numéro de notice : A2020-720 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12213657 date de publication en ligne : 08/11/2020 En ligne : https://doi.org/10.3390/rs12213657 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96310
in Remote sensing > vol 12 n° 21 (November 2020) . - n° 3657[article]VNIR-SWIR superspectral mineral mapping: An example from Cuprite, Nevada / Kathleen E. Johnson in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 11 (November 2020)
PermalinkDrought stress detection in juvenile oilseed rape using hyperspectral imaging with a focus on spectra variability / Wiktor R. Żelazny in Remote sensing, vol 12 n° 20 (October 2020)
PermalinkComparative analysis of index and chemometric techniques-based assessment of leaf area index (LAI) in wheat through field spectroradiometer, Landsat-8, Sentinel-2 and Hyperion bands / Bappa Das in Geocarto international, vol 35 n° 13 ([01/10/2020])
PermalinkA novel spectral–spatial based adaptive minimum spanning forest for hyperspectral image classification / Jing Lv in Geoinformatica [en ligne], vol 24 n° 4 (October 2020)
PermalinkHyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-laplacian loss and data-driven outlier detection / Zeyang Dou in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
PermalinkX-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data / Danfeng Hong in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkClassification of hyperspectral and LiDAR data using coupled CNNs / Renlong Hang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
PermalinkComplete and accurate data correction for seamless mosaicking of airborne hyperspectral images: A case study at a mining site in Inner Mongolia, China / Kun Tan in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
PermalinkSubpixel-pixel-superpixel-based multiview active learning for hyperspectral images classification / Yu Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
PermalinkUsing spectral indices to estimate water content and GPP in sphagnum moss and other peatland vegetation / Kirsten J. Lees in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
Permalink