Descripteur
Termes IGN > imagerie > image numérique > image optique > image multibande > image hyperspectrale
image hyperspectraleVoir aussi |
Documents disponibles dans cette catégorie (551)


Etendre la recherche sur niveau(x) vers le bas
A unified attention paradigm for hyperspectral image classification / Qian Liu in IEEE Transactions on geoscience and remote sensing, vol 61 n° 3 (March 2023)
![]()
[article]
Titre : A unified attention paradigm for hyperspectral image classification Type de document : Article/Communication Auteurs : Qian Liu, Auteur ; Zebin Wu, Auteur ; Yang Xu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 5506316 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectrale
[Termes IGN] précision de la classification
[Termes IGN] séparateur à vaste margeRésumé : (auteur) Attention mechanisms improve the classification accuracies by enhancing the salient information for hyperspectral images (HSIs). However, existing HSI attention models are driven by advanced achievements of computer vision, which are not able to fully exploit the spectral–spatial structure prior of HSIs and effectively refine features from a global perspective. In this article, we propose a unified attention paradigm (UAP) that defines the attention mechanism as a general three-stage process including optimizing feature representations, strengthening information interaction, and emphasizing meaningful information. Meanwhile, we designed a novel efficient spectral–spatial attention module (ESSAM) under this paradigm, which adaptively adjusts feature responses along the spectral and spatial dimensions at an extremely low parameter cost. Specifically, we construct a parameter-free spectral attention block that employs multiscale structured encodings and similarity calculations to perform global cross-channel interactions, and a memory-enhanced spatial attention block that captures key semantics of images stored in a learnable memory unit and models global spatial relationship by constructing semantic-to-pixel dependencies. ESSAM takes full account of the spatial distribution and low-dimensional characteristics of HSIs, with better interpretability and lower complexity. We develop a dense convolutional network based on efficient spectral–spatial attention network (ESSAN) and experiment on three real hyperspectral datasets. The experimental results demonstrate that the proposed ESSAM brings higher accuracy improvement compared to advanced attention models. Numéro de notice : A2023-185 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2023.3257321 Date de publication en ligne : 15/12/2023 En ligne : https://doi.org/10.1109/TGRS.2023.3257321 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102957
in IEEE Transactions on geoscience and remote sensing > vol 61 n° 3 (March 2023) . - n° 5506316[article]Bathymetry and benthic habitat mapping in shallow waters from Sentinel-2A imagery: A case study in Xisha islands, China / Wei Huang in IEEE Transactions on geoscience and remote sensing, vol 60 n° 12 (December 2022)
![]()
[article]
Titre : Bathymetry and benthic habitat mapping in shallow waters from Sentinel-2A imagery: A case study in Xisha islands, China Type de document : Article/Communication Auteurs : Wei Huang, Auteur ; Jun Zhao, Auteur ; Bin Ai, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4212412 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bathymétrie
[Termes IGN] carte thématique
[Termes IGN] Chine
[Termes IGN] correction atmosphérique
[Termes IGN] fond marin
[Termes IGN] habitat d'espèce
[Termes IGN] image hyperspectrale
[Termes IGN] image Sentinel-MSI
[Termes IGN] profondeur
[Termes IGN] réflectance spectraleRésumé : (auteur) Mapping of benthic habitats and bathymetry is crucial for sustainable development and assessment of climate change and human activities. In this study, Hyperspectral Optimization Process Exemplar (HOPE) was modified, renamed as M-HOPE, to simultaneously obtain bathymetry and benthic habitat in shallow waters in Xisha Island, China. A local lookup table (LUT) for benthic reflectance spectra was established. Validation using in situ measurements demonstrated good performance of M-HOPE with a R2 of 0.76 for bathymetry using the local LUT. Application of M-HOPE to Sentinel-2A imagery further proved good accuracy of M-HOPE derived bathymetry with a R2 of 0.86 against in situ observations and a R2 of 0.92 against ICESat-2 measurements. M-HOPE-derived benthic classification also agreed well with field observations with probability of detection (POD) >0.6 and false alarm ratio (FAR) Numéro de notice : A2022-907 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3229029 Date de publication en ligne : 14/12/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3229029 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102338
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 12 (December 2022) . - n° 4212412[article]Bayesian hyperspectral image super-resolution in the presence of spectral variability / Fei Ye in IEEE Transactions on geoscience and remote sensing, vol 60 n° 12 (December 2022)
![]()
[article]
Titre : Bayesian hyperspectral image super-resolution in the presence of spectral variability Type de document : Article/Communication Auteurs : Fei Ye, Auteur ; Zebin Wu, Auteur ; Yang Xu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5545613 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] processus gaussien
[Termes IGN] réflectance
[Termes IGN] signature spectrale
[Termes IGN] théorème de BayesRésumé : (auteur) Synthesizing a high-resolution (HR) hyperspectral image (HSI) by merging a low-resolution (LR) HSI with a corresponding HR multispectral image (MSI) has become a promising HSI super-resolution scheme. Most existing HSI-MSI fusion methods are effective to some extent, while several challenges remain. First, the spectral response of a given material exhibits considerable variability due to different acquisition times and conditions, however, variations in spectral signatures are often neglected. Second, a majority of off-the-shelf methods require predefined degradation operators, which can be unavailable in practice. To tackle the above issues, we introduce a novel fusion approach with a Bayesian framework. Specifically, we regard the up-sampled LR-HSI as the low-frequency component of the underlying HR-HSI. We characterize the texture features of high- and low-frequency components, respectively, which can enlarge modeling capacity and bypass the absence of degradation operators. Furthermore, we depict the relative smoothness of reflectance spectra with the Gaussian process. Extensive experiments on synthesized and real datasets illustrate the superiority of the proposed strategy in terms of fusion performance and robustness to spectral variability. Numéro de notice : A2022-908 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3228313 Date de publication en ligne : 12/12/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3228313 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102339
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 12 (December 2022) . - n° 5545613[article]Hyperspectral imagery and urban areas: results of the HYEP project / Christiane Weber in Revue Française de Photogrammétrie et de Télédétection, n° 224 (2022)
![]()
[article]
Titre : Hyperspectral imagery and urban areas: results of the HYEP project Type de document : Article/Communication Auteurs : Christiane Weber, Auteur ; Xavier Briottet , Auteur ; Thomas Houet, Auteur ; Sébastien Gadal, Auteur ; Rahim Aguejdad, Auteur ; Yannick Deville, Auteur ; Mauro Dalla Mura, Auteur ; Clément Mallet
, Auteur ; Arnaud Le Bris
, Auteur ; et al., Auteur
Année de publication : 2022 Projets : HYEP / Weber, Christiane Article en page(s) : pp 75 - 92 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse comparative
[Termes IGN] détection d'objet
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] Lituanie
[Termes IGN] milieu urbain
[Termes IGN] panneau photovoltaïque
[Termes IGN] surface imperméable
[Termes IGN] ToulouseRésumé : (Auteur) The HYEP project (ANR HYEP 14-CE22-0016-01 Hyperspectral imagery for Environmental urban Planning - Mobility and Urban Systems Programme - 2014) confirmed the interest of a global approach to the urban environment by remote sensing and in particular by using hyperspectral imaging (HI). The interest of hyperspectral images lies in the range of information provided over wavelengths from 0.4 to 4 μm; they thus provide access to spectral quantities of interest and to chemical or biophysical parameters of the surface. HYEP's objective was to specify this and to propose a panel of methods and treatments taking into account the characteristics of other existing sensors in order to compare their performance. The developments carried out were applied and evaluated on hyperspectral airborne images acquired in Toulouse and Kaunas (Lithuania), also used to synthesize space systems: Sentinel-2, Hypxim/Biodiversity and Pleiades. Among the locks identified were those related to improving the spatial capabilities of the sensors and spatial scale changes, which were partially overcome by fusion and sharpening approaches, which proved to be successful. After a description of our hyperspectral data set acquired over Toulouse, an analysis is conducted on several existing and accessible spectral databases. Then, the chosen methods are presented. They include extraction, fusion and classification methods, which are then applied on our dataset synthetized at different spatial resolution to evaluate the benefits and the complementarity of hyperspectral imagery in comparison with other traditional sensors. Some specific applications are investigated of interest for urban planners: impervious soil map, vegetation species cartography and detection of solar panels. Finally, discussion and perspectives are presented. Numéro de notice : A2022-941 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : Hal Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.52638/rfpt.2022.589 Date de publication en ligne : 22/12/2022 En ligne : https://dx.doi.org/10.52638/rfpt.2022.589 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102831
in Revue Française de Photogrammétrie et de Télédétection > n° 224 (2022) . - pp 75 - 92[article]Cross-guided pyramid attention-based residual hyperdense network for hyperspectral image pansharpening / Jiahui Qu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 11 (November 2022)
![]()
[article]
Titre : Cross-guided pyramid attention-based residual hyperdense network for hyperspectral image pansharpening Type de document : Article/Communication Auteurs : Jiahui Qu, Auteur ; Tongzhen Zhang, Auteur ; Wenqian Dong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5543114 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image hyperspectrale
[Termes IGN] image panchromatique
[Termes IGN] lissage de données
[Termes IGN] pansharpening (fusion d'images)Résumé : (auteur) Hyperspectral (HS) image pansharpening is of great importance in improving the spatial resolution for many commercial platforms and remote sensing tasks. Convolutional neural network (CNN) has recently been applied in pansharpening. However, most existing CNN-based pansharpening models followed an early-fusion/late-fusion strategy, which integrates the low-level/high-level features of panchromatic (PAN) and HS streams at the input-output of the network. It is difficult to learn more complex combinations between PAN and HS streams. This article proposes a novel end-to-end residual hyperdense pansharpening network with a cross-guided pyramid attention (called RHDcgpaNet). The overall architecture of the proposed method is a residual hyperdense network, which extends the definition of dense connections to two-stream pansharpening problem. The proposed RHDcgpaNet allows guidance from the state of the preceding layers to all the layers in- between PAN and HS streams in a feed-forward manner, significantly increasing the learning representation. A cross-guided pyramid attention is designed and embedded to the proposed residual hyperdense network to yield more useful spatial–spectral feature transfer in network. Extensive experiments on widely used datasets demonstrate that the proposed RHDcgpaNet achieves favorable performance in comparison to the state-of-the-art methods. Numéro de notice : A2022-852 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1109/TGRS.2022.3220079 Date de publication en ligne : 07/11/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3220079 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102098
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 11 (November 2022) . - n° 5543114[article]Land use/land cover mapping from airborne hyperspectral images with machine learning algorithms and contextual information / Ozlem Akar in Geocarto international, vol 37 n° 22 ([10/10/2022])
PermalinkChallenging the link between functional and spectral diversity with radiative transfer modeling and data / Javier Pacheco-Labradora in Remote sensing of environment, vol 280 (October 2022)
PermalinkClassification of pine wilt disease at different infection stages by diagnostic hyperspectral bands / Niwen Li in Ecological indicators, vol 142 (September 2022)
PermalinkHyperspectral unmixing using transformer network / Preetam Ghosh in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)
PermalinkHyperNet: A deep network for hyperspectral, multispectral, and panchromatic image fusion / Kun Li in ISPRS Journal of photogrammetry and remote sensing, vol 188 (June 2022)
PermalinkPrecise crop classification of hyperspectral images using multi-branch feature fusion and dilation-based MLP / Haibin Wu in Remote sensing, vol 14 n° 11 (June-1 2022)
PermalinkA new method to detect targets in hyperspectral images based on principal component analysis / Shahram Sharifi Hashjin in Geocarto international, vol 37 n° 9 ([15/05/2022])
PermalinkSpectral-spatial classification method for hyperspectral images using stacked sparse autoencoder suitable in limited labelled samples situation / Seyyed Ali Ahmadi in Geocarto international, vol 37 n° 7 ([15/04/2022])
PermalinkWood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data / Michele Dalponte in Remote sensing, vol 14 n° 8 (April-2 2022)
PermalinkDeep generative model for spatial–spectral unmixing with multiple endmember priors / Shuaikai Shi in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
Permalink