Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Amérique (géographie politique) > Etats-Unis > Caroline du Nord (Etats-Unis)
Caroline du Nord (Etats-Unis)Voir aussi |
Documents disponibles dans cette catégorie (20)



Etendre la recherche sur niveau(x) vers le bas
A vector-based method for drainage network analysis based on LiDAR data / Fangzheng Lyu in Computers & geosciences, vol 156 (November 2021)
![]()
[article]
Titre : A vector-based method for drainage network analysis based on LiDAR data Type de document : Article/Communication Auteurs : Fangzheng Lyu, Auteur ; Xinlin Ma, Auteur ; et al., Auteur Année de publication : 2021 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse vectorielle
[Termes IGN] Caroline du Nord (Etats-Unis)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] interpolation spatiale
[Termes IGN] modèle numérique de surface
[Termes IGN] réseau hydrographique
[Termes IGN] semis de pointsRésumé : (auteur) Drainage network analysis is fundamental to understanding the characteristics of surface hydrology. Based on elevation data, drainage network analysis is often used to extract key hydrological features like drainage networks and streamlines. Limited by raster-based data models, conventional drainage network algorithms typically allow water to flow in 4 or 8 directions (surrounding grids) from a raster grid. To resolve this limitation, this paper describes a new vector-based method for drainage network analysis that allows water to flow in any direction around each location. The method is enabled by rapid advances in Light Detection and Ranging (LiDAR) remote sensing and high-performance computing. The drainage network analysis is conducted using a high-density point cloud instead of Digital Elevation Models (DEMs) at coarse resolutions. Our computational experiments show that the vector-based method can better capture water flows without limiting the number of directions due to imprecise DEMs. Our case study applies the method to Rowan County watershed, North Carolina in the US. After comparing the drainage networks and streamlines detected with corresponding reference data from US Geological Survey generated from the Geonet software, we find that the new method performs well in capturing the characteristics of water flows on landscape surfaces in order to form an accurate drainage network. Numéro de notice : A2021-755 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2021.104892 Date de publication en ligne : 24/07/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.104892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98733
in Computers & geosciences > vol 156 (November 2021)[article]A web-based spatial decision support system for monitoring the risk of water contamination in private wells / Yu Lan in Annals of GIS, vol 26 n° 3 (July 2020)
![]()
[article]
Titre : A web-based spatial decision support system for monitoring the risk of water contamination in private wells Type de document : Article/Communication Auteurs : Yu Lan, Auteur ; Wenwu Tang, Auteur ; Samantha Dye, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 293 - 309 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] arsenic
[Termes IGN] base de données localisées
[Termes IGN] Caroline du Nord (Etats-Unis)
[Termes IGN] contamination
[Termes IGN] eau souterraine
[Termes IGN] interpolation spatiale
[Termes IGN] krigeage
[Termes IGN] pollution des eaux
[Termes IGN] prévention des risques
[Termes IGN] puits
[Termes IGN] santé
[Termes IGN] surveillance sanitaire
[Termes IGN] système d'aide à la décision
[Termes IGN] système d'information géographique
[Termes IGN] WebSIGRésumé : (auteur) Long-term exposure to contaminated water can cause health effects, such as cancer. Accurate spatial prediction of inorganic compounds (e.g. arsenic) and pathogens in groundwater is critical for water supply management. Ideally, environmental health agencies would have access to an early warning system to alert well owners of risks of such contamination. The estimation and dissemination of these risks can be facilitated by the combination of Geographic Information Systems and spatial analysis capabilities – i.e., spatial decision support system (SDSS). However, the use of SDSS, especially web-based SDSS, is rare for spatially explicit studies of drinking water quality of private wells. In this study, we introduce the interactive Well Water Risk Estimation(iWWRE), a web-based SDSS to facilitate the monitoring of water contamination in private wells across Gaston County, North Carolina (US). Our system implements geoprocessing web services and generates dynamic spatial analysis results based on a database of private wells. Environmental health scientists using our system can conduct fine-grained spatial interpolation on 1) a particular type of contaminant such as arsenic, 2) on various subsets through a temporal query. Visuals consist of an estimation map, cross validation information, Kriging variance and contour lines that delineate areas with maximum contaminant levels (MCL), as set by the US Environmental Protection Agency (EPA). Our web-based SDSS was developed jointly with environmental health specialists who found it particularly critical for the monitoring of local contamination trends, and a useful tool to reach out to private well users in highly elevated contaminated areas. Numéro de notice : A2020-583 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1798508 Date de publication en ligne : 30/07/2020 En ligne : https://doi.org/10.1080/19475683.2020.1798508 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95905
in Annals of GIS > vol 26 n° 3 (July 2020) . - pp 293 - 309[article]Hyperparameter optimization of neural network-driven spatial models accelerated using cyber-enabled high-performance computing / Minrui Zheng in International journal of geographical information science IJGIS, Vol 33 n° 1-2 (January - February 2019)
![]()
[article]
Titre : Hyperparameter optimization of neural network-driven spatial models accelerated using cyber-enabled high-performance computing Type de document : Article/Communication Auteurs : Minrui Zheng, Auteur ; Wenwu Tang, Auteur ; Xiang Zhao, Auteur Année de publication : 2019 Article en page(s) : pp 314 - 345 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] algorithme d'apprentissage
[Termes IGN] analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] Caroline du Nord (Etats-Unis)
[Termes IGN] données spatiotemporelles
[Termes IGN] géostatistique
[Termes IGN] méthode des moindres carrés
[Termes IGN] modèle empirique
[Termes IGN] modèle numérique de surface
[Termes IGN] modélisation spatiale
[Termes IGN] optimisation (mathématiques)
[Termes IGN] régression linéaire
[Termes IGN] réseau neuronal artificiel
[Termes IGN] système d'information foncièreRésumé : (auteur) Artificial neural networks (ANNs) have been extensively used for the spatially explicit modeling of complex geographic phenomena. However, because of the complexity of the computational process, there has been an inadequate investigation on the parameter configuration of neural networks. Most studies in the literature from GIScience rely on a trial-and-error approach to select the parameter setting for ANN-driven spatial models. Hyperparameter optimization provides support for selecting the optimal architectures of ANNs. Thus, in this study, we develop an automated hyperparameter selection approach to identify optimal neural networks for spatial modeling. Further, the use of hyperparameter optimization is challenging because hyperparameter space is often large and the associated computational demand is heavy. Therefore, we utilize high-performance computing to accelerate the model selection process. Furthermore, we involve spatial statistics approaches to improve the efficiency of hyperparameter optimization. The spatial model used in our case study is a land price evaluation model in Mecklenburg County, North Carolina, USA. Our results demonstrate that the automated selection approach improves the model-level performance compared with linear regression, and the high-performance computing and spatial statistics approaches are of great help for accelerating and enhancing the selection of optimal neural networks for spatial modeling. Numéro de notice : A2019-022 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1530355 Date de publication en ligne : 12/10/2018 En ligne : https://doi.org/10.1080/13658816.2018.1530355 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91689
in International journal of geographical information science IJGIS > Vol 33 n° 1-2 (January - February 2019) . - pp 314 - 345[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2019011 RAB Revue Centre de documentation En réserve 3L Disponible Intra-annual phenology for detecting understory plant invasion in urban forests / Kunwar K. Singh in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
![]()
[article]
Titre : Intra-annual phenology for detecting understory plant invasion in urban forests Type de document : Article/Communication Auteurs : Kunwar K. Singh, Auteur ; Yin-Hsuen Chen, Auteur ; Lindsey Smart, Auteur ; Josh Gray, Auteur ; Ross K. Meentemeyer, Auteur Année de publication : 2018 Article en page(s) : pp 151 - 161 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Caroline du Nord (Etats-Unis)
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] densité de la végétation
[Termes IGN] détection d'anomalie
[Termes IGN] espèce exotique envahissante
[Termes IGN] flore urbaine
[Termes IGN] forêt tempérée
[Termes IGN] image Landsat-TM
[Termes IGN] indice de végétation
[Termes IGN] Ligustrum sinense
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] phénologie
[Termes IGN] protection de la biodiversité
[Termes IGN] surveillance forestièreRésumé : (Auteur) Accurate and repeatable mapping of biological plant invasions is essential to develop successful management strategies for conserving native biodiversity. While overstory invasive plants have been successfully detected and mapped using multiple methods, understory invasive detection remains a challenge, particularly in dense forested environments. Very few studies have utilized an approach that identifies and aligns the acquisition timing of remote sensing imagery with peak phenological differences between understory and overstory vegetation types. We investigated this opportunity by analyzing a monthly time-series of 2011 Landsat TM data to identify acquisition periods with the highest phenological differences between understory and overstory vegetation for detecting the spatial distribution of the exotic understory plant Ligustrum sinense Lour., a rapidly spreading invader in urbanizing regions of the southeastern United States. We used vegetation indices (VI) to establish intra-annual phenological trends for L. sinense, evergreen forest, and deciduous forest located in Mecklenburg County, North Carolina, USA. We developed Random Forest (RF) models to detect L. sinense from those time steps exhibiting the highest phenological differences. We assessed the relative contribution of VI and topographic indices (TI) to the detection of L. sinense. We compared the top performing models and used the best overall model to produce a map of L. sinense for the study area. RF models that included VI, TI, and Landsat TM bands for March 13 and 29, 2011 (the periods with highest detected phenological differences), produced the highest overall accuracy and Kappa estimates, outperforming the combination of VI and TI by 8.5% in accuracy and 20.5% in Kappa. The top performing model from the RF produced a Kappa of 0.75. Our findings suggest that selecting remote sensing data for a period when phenological differences between L. sinense and forest types are at their peak can improve the detection and mapping of L. sinense. Numéro de notice : A2018-293 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.05.023 Date de publication en ligne : 15/06/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.05.023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90411
in ISPRS Journal of photogrammetry and remote sensing > vol 142 (August 2018) . - pp 151 - 161[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018081 RAB Revue Centre de documentation En réserve 3L Disponible 081-2018083 DEP-EXM Revue LaSTIG Dépôt en unité Exclu du prêt 081-2018082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Effects of LiDAR point density and landscape context on estimates of urban forest biomass / Kunwar K. Singh in ISPRS Journal of photogrammetry and remote sensing, vol 101 (March 2015)
![]()
[article]
Titre : Effects of LiDAR point density and landscape context on estimates of urban forest biomass Type de document : Article/Communication Auteurs : Kunwar K. Singh, Auteur ; Gang Chen, Auteur ; James B. McCarter, Auteur ; Ross K. Meentemeyer, Auteur Année de publication : 2015 Article en page(s) : pp 310 - 322 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] biomasse
[Termes IGN] Caroline du Nord (Etats-Unis)
[Termes IGN] composition d'un peuplement forestier
[Termes IGN] densité des points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] feuillu
[Termes IGN] forêt urbaine
[Termes IGN] régression multipleRésumé : (auteur) Light Detection and Ranging (LiDAR) data is being increasingly used as an effective alternative to conventional optical remote sensing to accurately estimate aboveground forest biomass ranging from individual tree to stand levels. Recent advancements in LiDAR technology have resulted in higher point densities and improved data accuracies accompanied by challenges for procuring and processing voluminous LiDAR data for large-area assessments. Reducing point density lowers data acquisition costs and overcomes computational challenges for large-area forest assessments. However, how does lower point density impact the accuracy of biomass estimation in forests containing a great level of anthropogenic disturbance? We evaluate the effects of LiDAR point density on the biomass estimation of remnant forests in the rapidly urbanizing region of Charlotte, North Carolina, USA. We used multiple linear regression to establish a statistical relationship between field-measured biomass and predictor variables derived from LiDAR data with varying densities. We compared the estimation accuracies between a general Urban Forest type and three Forest Type models (evergreen, deciduous, and mixed) and quantified the degree to which landscape context influenced biomass estimation. The explained biomass variance of the Urban Forest model, using adjusted R2, was consistent across the reduced point densities, with the highest difference of 11.5% between the 100% and 1% point densities. The combined estimates of Forest Type biomass models outperformed the Urban Forest models at the representative point densities (100% and 40%). The Urban Forest biomass model with development density of 125 m radius produced the highest adjusted R2 (0.83 and 0.82 at 100% and 40% LiDAR point densities, respectively) and the lowest RMSE values, highlighting a distance impact of development on biomass estimation. Our evaluation suggests that reducing LiDAR point density is a viable solution to regional-scale forest assessment without compromising the accuracy of biomass estimates, and these estimates can be further improved using development density. Numéro de notice : A2015-471 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2014.12.021 En ligne : https://doi.org/10.1016/j.isprsjprs.2014.12.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=77173
in ISPRS Journal of photogrammetry and remote sensing > vol 101 (March 2015) . - pp 310 - 322[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2015031 RAB Revue Centre de documentation En réserve 3L Disponible Alien species pool influences the level of habitat invasion in intercontinental exchange of alien plants / Veronica Kalusová in Global ecology and biogeography, vol 23 n° 12 (December 2014)
PermalinkBasal area and biomass estimates of loblolly pine stands using L-band UAVSAR / William L. Marks in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 1 (January 2014)
PermalinkLiDAR-Landsat data fusion for large-area assessment of urban land cover: Balancing spatial resolution, data volume and mapping accuracy / K. Singh in ISPRS Journal of photogrammetry and remote sensing, vol 74 (Novembrer 2012)
PermalinkUsing GRASS GIS to model solar irradiation on North Carolina aquatic habitats with canopy data / D. Newcomb in Transactions in GIS, vol 16 n° 2 (April 2012)
PermalinkWho's watching your food? A flexible framework for public health monitoring / Stacy Supak in Transactions in GIS, vol 16 n° 2 (April 2012)
PermalinkEstuarine shoreline change detection using Japanese ALOS PALSAR HH and JERS-1 L-HH SAR data in the Albemarle-Pamlico Sounds, North Carolina, USA / Y. Wang in International Journal of Remote Sensing IJRS, vol 29 n° 15-16 (August 2008)
PermalinkPer-pixel classification of high spatial resolution satellite imagery for urban land-cover mapping / D. Hester in Photogrammetric Engineering & Remote Sensing, PERS, vol 74 n° 4 (April 2008)
PermalinkRaster modelling of coastal flooding from sea-level rise / B. Poulter in International journal of geographical information science IJGIS, vol 22 n° 1-2 (february 2008)
PermalinkImpact of imagery temporal on land-cover change detection monitoring / R.S. Lunetta in Remote sensing of environment, vol 89 n° 4 (29/02/2004)
PermalinkAVIRIS measurements of chlorophyll, suspended minerals, dissolved organic carbon, and turbidity in the Neuse River, North Carolina / M.A. Karaska in Photogrammetric Engineering & Remote Sensing, PERS, vol 70 n° 1 (January 2004)
Permalink