Descripteur


Etendre la recherche sur niveau(x) vers le bas
An integrated method for DEM simplification with terrain structural features and smooth morphology preserved / Wenhao Yu in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
![]()
[article]
Titre : An integrated method for DEM simplification with terrain structural features and smooth morphology preserved Type de document : Article/Communication Auteurs : Wenhao Yu, Auteur ; Yifan Zhang, Auteur ; Tinghua Ai, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 273 - 295 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie
[Termes descripteurs IGN] algorithme de lissage
[Termes descripteurs IGN] analyse structurelle
[Termes descripteurs IGN] arête
[Termes descripteurs IGN] carte géomorphologique
[Termes descripteurs IGN] filtrage statistique
[Termes descripteurs IGN] ligne caractéristique
[Termes descripteurs IGN] limite de terrain
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] visualisation multiéchelleRésumé : (auteur) As a key focus of cartography and terrain analysis, the simplification of a digital elevation model (DEM) is used to preserve the pattern features of the terrain surface while suppressing its details over multiple scales. Statistical filtering and structural analysis methods are commonly used for this process. The structural analysis method performs well in identifying terrain structural edges, while it tends to discard the smooth morphology of a terrain surface. In addition, the filter that aims to reduce noise on a surface may over-smooth the terrain structural edges. Therefore, to preserve both the terrain structural edges and smooth morphology, we propose to combine the techniques of statistical filtering and structural analysis. Specifically, all the critical elevation points and structural edges are first detected from the DEM surface by using the structural analysis method. Then, the iterative guided normal filter is used to smooth the generalized DEM with the guidance of the structure of the original surface. After this process, the terrain structure is retained in the smooth surface of the DEM. The experimental results with a real-world dataset show that our method can inherit the merits of both structural analysis and statistical filter in preserving terrain features for multi-scale DEM representations. Numéro de notice : A2021-038 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1772479 date de publication en ligne : 29/05/2020 En ligne : https://doi.org/10.1080/13658816.2020.1772479 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96747
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 273 - 295[article]Extracting knowledge from legacy maps to delineate eco-geographical regions / Lin Yang in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
![]()
[article]
Titre : Extracting knowledge from legacy maps to delineate eco-geographical regions Type de document : Article/Communication Auteurs : Lin Yang, Auteur ; Xinming Li, Auteur ; Qinye Yang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 250 - 272 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes descripteurs IGN] carte ancienne
[Termes descripteurs IGN] carte climatique
[Termes descripteurs IGN] cartographie écologique
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] délimitation
[Termes descripteurs IGN] données cartographiques
[Termes descripteurs IGN] écorégion
[Termes descripteurs IGN] extraction de données
[Termes descripteurs IGN] logique floue
[Termes descripteurs IGN] sous ensemble flou
[Termes descripteurs IGN] zone tamponRésumé : (auteur) Legacy ecoregion maps contain knowledge on relationships between eco-region units and their environmental factors. This study proposes a method to extract knowledge from legacy area-class maps to formulate a set of fuzzy membership functions useful for regionalization. We develop a buffer zone approach to reduce the uncertainty of boundaries between eco-region units on area-class maps. We generate buffer zones with a Euclidean distance perpendicular to the boundaries, then the original eco-region units without buffer zones serve as the basic units to generate the probability density functions (PDF) of environmental variables. Then, we transform the PDFs to fuzzy membership functions for class-zones on the map. We demonstrate the proposed method with a climatic zone map of China. The results showed that the buffer zone approach effectively reduced the uncertainties of boundaries. A buffer distance of 10–15 km was recommended in this study. The climatic zone map generated based on the extracted fuzzy membership functions showed a higher spatial stratification heterogeneity (compared to the original map). Based on the fuzzy membership functions with climate data of 1961–2015, we also prepared an updated climatic zone map. This study demonstrates the prospects of using fuzzy membership functions to delineate area classes for regionalization purpose. Numéro de notice : A2021-025 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1806284 date de publication en ligne : 17/09/2020 En ligne : https://doi.org/10.1080/13658816.2020.1806284 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96692
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 250 - 272[article]Identifying urban growth patterns through land-use/land-cover spatio-temporal metrics: Simulation and analysis / Marta Sapena in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
![]()
[article]
Titre : Identifying urban growth patterns through land-use/land-cover spatio-temporal metrics: Simulation and analysis Type de document : Article/Communication Auteurs : Marta Sapena, Auteur ; Luis Angel Ruiz, Auteur Année de publication : 2021 Article en page(s) : pp 375 - 396 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] analyse discriminante
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] carte d'utilisation du sol
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] distance euclidienne
[Termes descripteurs IGN] modèle de croissance
[Termes descripteurs IGN] pondérationRésumé : (auteur) The spatial pattern of urban growth determines how the physical, socio-economic and environmental characteristics of urban areas change over time. Monitoring urban areas for early identification of spatial patterns facilitates assuring their sustainable growth. In this paper, we assess the use of spatio-temporal metrics from land-use/land-cover (LULC) maps to identify growth patterns. We applied LULC change models to simulate different scenarios of urban growth spatial patterns (i.e., expansion, compact, dispersed, road-based and leapfrog) on various baseline urban forms (i.e., monocentric, polycentric, sprawl and linear). Then, we computed the spatio-temporal metrics for the simulated scenarios, selected the most informative metrics by applying discriminant analysis and classified the growth patterns using clustering methods. Two metrics, Weighted mean expansion and Weighted Euclidean distance, which account for the densification, compactness and concentration of urban growth, were the most efficient for classifying the five growth patterns, despite the influence of the baseline urban form. These metrics have the potential to identify growth patterns for monitoring and evaluating the management of developing urban areas. Numéro de notice : A2021-040 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1817463 date de publication en ligne : 08/09/2020 En ligne : https://doi.org/10.1080/13658816.2020.1817463 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96752
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 375 - 396[article]Land cover harmonization using Latent Dirichlet Allocation / Zhan Li in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
![]()
[article]
Titre : Land cover harmonization using Latent Dirichlet Allocation Type de document : Article/Communication Auteurs : Zhan Li, Auteur ; Joanne C. White, Auteur ; Michael A. Wulder, Auteur Année de publication : 2021 Article en page(s) : pp 348 - 374 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] allocation de Dirichlet latente
[Termes descripteurs IGN] Canada
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] chevauchement
[Termes descripteurs IGN] erreur de classification
[Termes descripteurs IGN] étiquetage sémantique
[Termes descripteurs IGN] harmonisation des données
[Termes descripteurs IGN] matrice d'erreur
[Termes descripteurs IGN] matrice de co-occurrence
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Large-area land cover maps are produced to satisfy different information needs. Land cover maps having partial or complete spatial and/or temporal overlap, different legends, and varying accuracies for similar classes, are increasingly common. To address these concerns and combine two 30-m resolution land cover products, we implemented a harmonization procedure using a Latent Dirichlet Allocation (LDA) model. The LDA model used regionalized class co-occurrences from multiple maps to generate a harmonized class label for each pixel by statistically characterizing land attributes from the class co-occurrences. We evaluated multiple harmonization approaches: using the LDA model alone and in combination with more commonly used information sources for harmonization (i.e. error matrices and semantic affinity scores). The results were compared with the benchmark maps generated using simple legend crosswalks and showed that using LDA outputs with error matrices performed better and increased harmonized map overall accuracy by 6–19% for areas of disagreement between the source maps. Our results revealed the importance of error matrices to harmonization, since excluding error matrices reduced overall accuracy by 4–20%. The LDA-based harmonization approach demonstrated in this paper is quantitative, transparent, portable, and efficient at leveraging the strengths of multiple land cover maps over large areas. Numéro de notice : A2021-027 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1796131 date de publication en ligne : 27/07/2020 En ligne : https://doi.org/10.1080/13658816.2020.1796131 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96701
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 348 - 374[article]Spruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery / Rajeev Bhattarai in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : Spruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery Type de document : Article/Communication Auteurs : Rajeev Bhattarai, Auteur ; Parinaz Rahimzadeh-Bajgiran, Auteur ; Aaron R. Weiskittel, Auteur Année de publication : 2021 Article en page(s) : pp 28 - 40 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Abies balsamea
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] défoliation
[Termes descripteurs IGN] dégradation de la flore
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] insecte phyllophage
[Termes descripteurs IGN] Nouveau-Brunswick (Canada)
[Termes descripteurs IGN] Picea abiesRésumé : (auteur) Spruce budworm (Choristoneura fumiferana; SBW) is the most destructive forest pest of northeastern Canada and United States. SBW occurrence as well as the extent and severity of its damage are highly dependent on the characteristics of the forests and the availability of host species namely, spruce (Picea sp.) and balsam fir (Abies balsamea (L.) Mill.). Remote sensing satellite imagery represents a valuable data source for seamless regional-scale mapping of forest composition. This study developed and evaluated new models to map the distribution and abundance of SBW host species at 20 m spatial resolution using Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 multispectral imagery in combination with several site variables for a total of 191 variables in northern New Brunswick, Canada using the Random Forest (RF) algorithm. We found Sentinel-2 multi-temporal single spectral bands and numerous spectral vegetation indices (SVIs) yielded the classification of SBW host species with an overall accuracy (OA) of 72.6% and kappa coefficient (K) of 0.65. Incorporating Sentinel-1 SAR data with Sentinel-2 variables coupled with elevation, only marginally improved the performance of the model (OA: 73.0% and K: 0.66). The use of Sentinel-1 SAR data with elevation resulted in a reasonable OA of 57.5% and K of 0.47. These spatially explicit up-to-date SBW host species maps are essential for identifying susceptible forests, monitoring SBW defoliation, and minimizing forest losses from insect impacts at landscape scale in the current SBW outbreak in the region. Numéro de notice : A2021-085 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.023 date de publication en ligne : 15/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.023 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96845
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 28 - 40[article]Automated detection of lineaments express geological linear features of a tropical region using topographic fabric grain algorithm and the SRTM DEM / Samy Ismail Elmahdy in Geocarto international, vol 36 n° 1 ([01/01/2021])
PermalinkExamining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping / Mthembeni Mngadi in Geocarto international, vol 36 n° 1 ([01/01/2021])
PermalinkExtraction of street pole-like objects based on plane filtering from mobile LiDAR data / Jingming Tu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkFrom local to global: A transfer learning-based approach for mapping poplar plantations at national scale using Sentinel-2 / Yousra Hamrouni in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkSpatial characterization and distribution modelling of Ensete ventricosum (wild and cultivated) in Ethiopia / Meron Awoke Eshetae in Geocarto international, vol 36 n° 1 ([01/01/2021])
PermalinkThe use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution / Dimitri I. Rukhovitch in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkBioclimatic modeling of potential vegetation types as an alternative to species distribution models for projecting plant species shifts under changing climates / Robert E. Keane in Forest ecology and management, vol 477 ([01/12/2020])
PermalinkMapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks / Felix Schiefer in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
PermalinkThe effect of different sampling schemes on estimation precision of snow water equivalent (SWE) using geostatistics techniques in a semi-arid region of Iran / Hojatolah Ganjkhanlo in Geocarto international, vol 35 n° 16 ([01/12/2020])
PermalinkAnalyse de la déforestation dans la périphérie ouest de la réserve de biosphère du Dja au Cameroun, à partir d'une série multi-annuelle d'images Landsat / Eric Wilson Tegno Nguekam in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
Permalink