Descripteur
Termes descripteurs IGN > 1- Outils - instruments et méthodes > document > document géographique > document cartographique > carte > carte thématique > carte agricole > surface cultivée
surface cultivée
Commentaire :
région agricole, région de cultures, surface agricole, terre agricole, territoire agricole, zone agricole, zone agroclimatique. campagne, biome, géographie agricole. >> culture, déprise agricole, utilisation agricole du sol. >>Terme(s) spécifique(s) : agriculture des régions arides, agriculture en montagne. Equiv. LCSH : Crop zones. Domaine(s) : 630. Synonyme(s)zone cultivée ;zone agricole ;Terre cultivée ;Terre agricole ;parcelle cultivée ;espace cultivé ;espace agricole ;champ cultivé zone de culture |



Etendre la recherche sur niveau(x) vers le bas
Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands / Emmanuelle Vaudour in International journal of applied Earth observation and geoinformation, vol 96 (April 2021)
![]()
[article]
Titre : Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands Type de document : Article/Communication Auteurs : Emmanuelle Vaudour, Auteur ; Cécile Gomez, Auteur ; Philippe Lagacherie, Auteur Année de publication : 2021 Article en page(s) : n° 102277 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] mosaïquage d'images
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] puits de carbone
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] sol nu
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] teneur en carbone
[Termes descripteurs IGN] terre arable
[Termes descripteurs IGN] Yvelines (78)Résumé : (auteur) The spatial assessment of soil organic carbon (SOC) is a major environmental challenge, notably for evaluating soil carbon stocks. Recent works have shown the capability of Sentinel-2 to predict SOC content over temperate agroecosystems characterized with annual crops. However, because spectral models are only applicable on bare soils, the mapping of SOC is often obtained on limited areas. A possible improvement for increasing the number of pixels on which SOC can be retrieved by inverting bare soil reflectance spectra, consists of using optical images acquired at several dates. This study compares different approaches of Sentinel–2 images temporal mosaicking to produce a composite multi-date bare soil image for predicting SOC content over agricultural topsoils. A first approach for temporal mosaicking was based on a per-pixel selection and was driven by soil surface characteristics: bare soil or dry bare soil with/without removing dry vegetation. A second approach for creating composite images was based on a per-date selection and driven either by the models performance from single-date, or by average soil surface indicators of bare soil or dry bare soil. To characterize soil surface, Sentinel-1 (S1)-derived soil moisture and/or spectral indices such as normalized difference vegetation index (NDVI), Normalized Burn Ratio 2 (NBR2), bare soil index (BSI) and a soil surface moisture index (S2WI) were used either separately or in combination. This study highlighted the following results: i) none of the temporal mosaic images improved model performance for SOC prediction compared to the best single-date image; ii) of the per-pixel approaches, temporal mosaics driven by the S1-derived moisture content, and to a lesser extent, by NBR2 index, outperformed the mosaic driven by the BSI index but they did not increase the bare soil area predicted; iii) of the per-date approaches, the best trade-off between predicted area and model performance was achieved from the temporal mosaic driven by the S1-derived moisture content (R2 ~ 0.5, RPD ~ 1.4, RMSE ~ 3.7 g.kg-1) which enabled to more than double (*2.44) the predicted area. This study suggests that a number of bare soil mosaics based on several indicators (moisture, bare soil, roughness…), preferably in combination, might maintain acceptable accuracies for SOC prediction whilst extending over larger areas than single-date images. Numéro de notice : A2021-238 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2020.102277 date de publication en ligne : 14/12/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102277 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97258
in International journal of applied Earth observation and geoinformation > vol 96 (April 2021) . - n° 102277[article]Application of thermal imaging and hyperspectral remote sensing for crop water deficit stress monitoring / Gopal Krishna in Geocarto international, vol 36 n° 5 ([15/03/2021])
![]()
[article]
Titre : Application of thermal imaging and hyperspectral remote sensing for crop water deficit stress monitoring Type de document : Article/Communication Auteurs : Gopal Krishna, Auteur ; Rabi N. Sahoo, Auteur ; Prafull Singh, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 481 - 498 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image thermique
[Termes descripteurs IGN] indice de stress
[Termes descripteurs IGN] Oryza (genre)
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] régression des moindres carrés partiels
[Termes descripteurs IGN] rizière
[Termes descripteurs IGN] sécheresse
[Termes descripteurs IGN] stress hydrique
[Termes descripteurs IGN] teneur en eau de la végétationRésumé : (auteur) Water deficit in crops induces a stress that may ultimately result in low production. Identification of response of genotypes towards water deficit stress is very crucial for plant phenotyping. The study was carried out with the objective to identify the response of different rice genotypes to water deficit stress. Ten rice genotypes were grown each under water deficit stress and well watered or nonstress conditions. Thermal images coupled with visible images were recorded to quantify the stress and response of genotypes towards stress, and relative water content (RWC) synchronized with image acquisition was also measured in the lab for rice leaves. Synced with thermal imaging, Canopy reflectance spectra from same genotype fields were also recorded. For quantification of water deficit stress, Crop Water Stress Index (CWSI) was computed and its mode values were extracted from processed thermal imageries. It was ascertained from observations that APO and Pusa Sugandha-5 genotypes exhibited the highest resistance to the water deficit stress or drought whereas CR-143, MTU-1010, and Pusa Basmati-1 genotypes ascertained the highest sensitiveness to the drought. The study reveals that there is an effectual relationship (R2 = 0.63) between RWC and CWSI. The relationship between canopy reflectance spectra and CWSI was also established through partial least square regression technique. A very efficient relationship (calibration R2 = 0.94 and cross-validation R2 = 0.71) was ascertained and 10 most optimal wavebands related to water deficit stress were evoked from hyperspectral data resampled at 5 nm wavelength gap. The identified ten most optimum wavebands can contribute in the quick detection of water deficit stress in crops. This study positively contributes towards the identification of drought tolerant and drought resistant genotypes of rice and may provide valuable input for the development of drought-tolerant rice genotypes in future. Numéro de notice : A2021-250 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1618922 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1618922 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97272
in Geocarto international > vol 36 n° 5 [15/03/2021] . - pp 481 - 498[article]Agricultural land partitioning model based on irrigation efficiency using a multi‐objective artificial bee colony algorithm / Mehrdad Bijandi in Transactions in GIS, Vol 25 n° 1 (February 2021)
![]()
[article]
Titre : Agricultural land partitioning model based on irrigation efficiency using a multi‐objective artificial bee colony algorithm Type de document : Article/Communication Auteurs : Mehrdad Bijandi, Auteur ; Mohammad Karimi, Auteur ; Bahman Farhadi Bansouleh, Auteur ; Wim van der Knaap, Auteur Année de publication : 2021 Article en page(s) : pp 551 - 574 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] données topographiques
[Termes descripteurs IGN] irrigation
[Termes descripteurs IGN] optimisation par colonie de fourmis
[Termes descripteurs IGN] parcelle agricole
[Termes descripteurs IGN] planification
[Termes descripteurs IGN] remembrement agricole
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] utilisation du solRésumé : (Auteur) In the process of agricultural land consolidation, the land parcels are optimally redesigned and rearranged in such a way that the dimensions of the resulting parcels are proportional to agricultural criteria such as irrigation discharge, soil texture, and cropping pattern. Besides these criteria, spatial factors like slope, road accessibility, volume of earthwork, and geometrical factors such as size and shape of parcels are also included in the design process of agricultural land partitioning. In this study, a land partitioning model was proposed using a multi‐objective artificial bee colony algorithm (MOABC‐LP) taking into consideration the mentioned factors. Initially, a feasible dimension range of parcels in a block was calculated based on irrigation efficiency. Two partitioning layouts were defined according to the topography and geometry of blocks. The proposed method was applied to a real study area and the results suggest that the land partitioning plan obtained by the MOABC‐LP model, in comparison with a designer's plan, not only makes the shape and size of parcels more compatible with the topographical and agricultural conditions of each block, but also reduces their cut‐and‐fill ratio. Numéro de notice : A2021-210 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12702 date de publication en ligne : 27/10/2020 En ligne : https://doi.org/10.1111/tgis.12702 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97159
in Transactions in GIS > Vol 25 n° 1 (February 2021) . - pp 551 - 574[article]Crop identification by massive processing of multiannual satellite imagery for EU common agriculture policy subsidy control / Adolfo Lozano-Tello in European journal of remote sensing, vol 54 n° 1 (2021)
![]()
[article]
Titre : Crop identification by massive processing of multiannual satellite imagery for EU common agriculture policy subsidy control Type de document : Article/Communication Auteurs : Adolfo Lozano-Tello, Auteur ; Marcos Fernández-Sellers, Auteur ; Elia Quirós, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1 - 12 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] classification pixellaire
[Termes descripteurs IGN] Estrémadure (Espagne)
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] politique agricole commune
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] surveillance agricoleRésumé : (auteur) The early and automatic identification of crops declared by farmers is essential for streamlining European Union Common Agricultural Policy (CAP) payment processes. Currently, field inspections are partial, expensive and entail a considerable delay in the process. Chronological satellite images of cultivated plots can be used so that neural networks can form the model of the declared crop. Once the patterns of a crop are obtained, the correspondence of the declaration with the model of the neural network can be systematically predicted, and can be used for monitoring the CAP. In this article, we propose a learning model with neural networks, using as examples of training the pixels of the cultivated plots from the satellite images over a period of time. We also propose using several years in the training model to generalise the patterns without linking them to the climatic characteristics of a specific year. The article also describes the use of the model in learning the multi-year pattern of tobacco cultivation with very good results. Numéro de notice : A2021-138 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/22797254.2020.1858723 date de publication en ligne : 30/12/2020 En ligne : https://doi.org/10.1080/22797254.2020.1858723 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97012
in European journal of remote sensing > vol 54 n° 1 (2021) . - pp 1 - 12[article]Mapping seasonal agricultural land use types using deep learning on Sentinel-2 image time series / Misganu Debella-Gilo in Remote sensing, Vol 13 n° 2 (January 2021)
![]()
[article]
Titre : Mapping seasonal agricultural land use types using deep learning on Sentinel-2 image time series Type de document : Article/Communication Auteurs : Misganu Debella-Gilo, Auteur ; Arnt Kristian Gjertsen, Auteur Année de publication : 2021 Article en page(s) : n° 289 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] carte agricole
[Termes descripteurs IGN] carte d'utilisation du sol
[Termes descripteurs IGN] classification par Perceptron multicouche
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Norvège
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] Soil Adjusted Vegetation Index
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] utilisation du sol
[Termes descripteurs IGN] variation saisonnièreRésumé : (auteur) The size and location of agricultural fields that are in active use and the type of use during the growing season are among the vital information that is needed for the careful planning and forecasting of agricultural production at national and regional scales. In areas where such data are not readily available, an independent seasonal monitoring method is needed. Remote sensing is a widely used tool to map land use types, although there are some limitations that can partly be circumvented by using, among others, multiple observations, careful feature selection and appropriate analysis methods. Here, we used Sentinel-2 satellite image time series (SITS) over the land area of Norway to map three agricultural land use classes: cereal crops, fodder crops (grass) and unused areas. The Multilayer Perceptron (MLP) and two variants of the Convolutional Neural Network (CNN), are implemented on SITS data of four different temporal resolutions. These enabled us to compare twelve model-dataset combinations to identify the model-dataset combination that results in the most accurate predictions. The CNN is implemented in the spectral and temporal dimensions instead of the conventional spatial dimension. Rather than using existing deep learning architectures, an autotuning procedure is implemented so that the model hyperparameters are empirically optimized during the training. The results obtained on held-out test data show that up to 94% overall accuracy and 90% Cohen’s Kappa can be obtained when the 2D CNN is applied on the SITS data with a temporal resolution of 7 days. This is closely followed by the 1D CNN on the same dataset. However, the latter performs better than the former in predicting data outside the training set. It is further observed that cereal is predicted with the highest accuracy, followed by grass. Predicting the unused areas has been found to be difficult as there is no distinct surface condition that is common for all unused areas. Numéro de notice : A2021-198 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13020289 date de publication en ligne : 15/01/2021 En ligne : https://doi.org/10.3390/rs13020289 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97149
in Remote sensing > Vol 13 n° 2 (January 2021) . - n° 289[article]Spatial characterization and distribution modelling of Ensete ventricosum (wild and cultivated) in Ethiopia / Meron Awoke Eshetae in Geocarto international, vol 36 n° 1 ([01/01/2021])
PermalinkThe use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution / Dimitri I. Rukhovitch in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkCombination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia / Sanjiwana Arjasakusuma in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkTime series potential assessment for biophysical characterization of orchards and crops in a mixed scenario with Sentinel-1A SAR data / Hemant Sahu in Geocarto international, vol 35 n° 14 ([15/10/2020])
PermalinkForest clear-cuts as habitat for farmland birds and butterflies / Dafne Ram in Forest ecology and management, vol 473 ([01/10/2020])
PermalinkUse of visible and near-infrared reflectance spectroscopy models to determine soil erodibility factor (K) in an ecologically restored watershed / Qinghu Jiang in Remote sensing, vol 12 n° 18 (September 2020)
PermalinkMapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine / Aparna R. Phalke in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkMining regional patterns of land use with adaptive adjacent criteria / Xinmeng Tu in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
PermalinkAccuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets / Lamin R. Mansaray in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkDetecting abandoned farmland using harmonic analysis and machine learning / Heeyeun Yoon in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkImproved crop classification with rotation knowledge using Sentinel-1 and -2 time series / Sébastien Giordano in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 7 (July 2020)
PermalinkAn integrated approach for detection and prediction of greening situation in a typical desert area in China and its human and climatic factors analysis / Lei Zhou in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
PermalinkA convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery / Lucas Prado Osco in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkCombination of linear regression lines to understand the response of Sentinel-1 dual polarization SAR data with crop phenology - case study in Miyazaki, Japan / Emal Wali in Remote sensing, vol 12 n° 1 (January 2020)
PermalinkPermalinkPermalinkCombining machine learning and compact polarimetry for estimating soil moisture from C-Band SAR data / Emanuele Santi in Remote sensing, Vol 11 n° 20 (October 2019)
PermalinkComparative analysis of the accuracy of surface soil moisture estimation from the C- and L-bands / Mohammad El Hajj in International journal of applied Earth observation and geoinformation, vol 82 (October 2019)
PermalinkMultitemporal Landsat-MODIS fusion for cropland drought monitoring in El Salvador / Nguyen-Thanh Son in Geocarto international, vol 34 n° 12 ([15/09/2019])
PermalinkExploring the synergy between Landsat and ASAR towards improving thematic mapping accuracy of optical EO data / Alexander Cass in Applied geomatics, vol 11 n° 3 (September 2019)
PermalinkA generalized space-time OBIA classification scheme to map sugarcane areas at regional scale, using Landsat images time-series and the random forest algorithm / Ana Claudia Dos Santos Luciano in International journal of applied Earth observation and geoinformation, vol 80 (August 2019)
PermalinkEvaluating metrics derived from Landsat 8 OLI imagery to map crop cover / Rei Sonobe in Geocarto international, vol 34 n° 8 ([15/06/2019])
PermalinkLong-term soil moisture content estimation using satellite and climate data in agricultural area of Mongolia / Enkhjargal Natsagdorj in Geocarto international, vol 34 n° 7 ([01/06/2019])
PermalinkCartographie de l’aléa érosif dans le bassin sud du Litani-Liban / Hussein El Hage Hassan in Revue internationale de géomatique, vol 29 n° 2 (avril - juin 2019)
PermalinkEvaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands / Fabio Castaldi in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)
PermalinkPermalinkLand parcel management system in Poland and a case study of EU member states / Agnieszka Trystuła in Geodetski vestnik, vol 62 n° 4 (December 2018 - February 2019)
PermalinkSeparating the influence of vegetation changes in polarimetric differential SAR interferometry / Virginia Brancato in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
PermalinkObject-based crop classification using multi-temporal SPOT-5 imagery and textural features with a Random Forest classifier / Huanxue Zhang in Geocarto international, vol 33 n° 10 (October 2018)
PermalinkConception d’une méthode radar de suivi bimensuel des déforestations et d’une méthode optique de classification d’occupation des sols / Luc Baudoux (2018)
PermalinkEstimation of surface roughness over bare agricultural soil from Sentinel-1 data / Mohammad Choker (2018)
PermalinkFusion of RADARSAT-2 and multispectral optical remote sensing data for LULC extraction in a tropical agricultural area / Mohamed Barakat A. Gibril in Geocarto international, vol 32 n° 7 (July 2017)
PermalinkAgricultural cropland mapping using black-and-white aerial photography, Object-Based Image Analysis and Random Forests / M.F.A. Vogels in International journal of applied Earth observation and geoinformation, vol 54 (February 2017)
PermalinkPermalinkContributions méthodologiques pour la caractérisation des milieux par imagerie optique et lidar / Nesrine Chehata (2017)
PermalinkSols artificialisés et processus d’artificialisation des sols : déterminants, impacts et leviers d’action / Béatrice Béchet (2017)
![]()
PermalinkTélédétection pour l'observation des surfaces continentales, Volume 3. Observation des surfaces continentales par télédétection 1 / Nicolas Baghdadi (2017)
PermalinkCHP toolkit : case study of LAIe sensitivity to discontinuity of canopy cover in fruit plantations / Karolina D. Fieber in IEEE Transactions on geoscience and remote sensing, vol 54 n° 9 (September 2016)
PermalinkUse of SAR data for detecting floodwater in urban and agricultural areas: the role of the interferometric coherence / Luca Pulvirenti in IEEE Transactions on geoscience and remote sensing, vol 54 n° 3 (March 2016)
PermalinkPermalinkExtraction des zones cohérentes par l’analyse spatio-temporelle d’images de télédétection / Thomas Guyet in Revue internationale de géomatique, vol 25 n° 4 (octobre - décembre 2015)
PermalinkUtilisation des technologies géospatiales pour l'évaluation des transformations spatiales dues aux pressions anthropiques dans le canton Afféma (Sud-est ivoirien) / Armand Kangah in Photo interpretation, European journal of applied remote sensing, vol 51 n° 3 (septembre 2015)
PermalinkCaractérisation de vergers à partir de données photographiques hautes précisions et lidar / Jean-François Fayel (2015)
PermalinkMéthode de cartographie de la consommation de sol agricole dans le Grand Genève / Marie-Laure Halle (2015)
PermalinkPermalink