Descripteur
Termes descripteurs IGN > 1- Outils - instruments et méthodes > document > document géographique > document cartographique > carte > carte thématique > carte agricole > surface cultivée
surface cultivée
Commentaire :
région agricole, région de cultures, surface agricole, terre agricole, territoire agricole, zone agricole, zone agroclimatique. campagne, biome, géographie agricole. >> culture, déprise agricole, utilisation agricole du sol. >>Terme(s) spécifique(s) : agriculture des régions arides, agriculture en montagne. Equiv. LCSH : Crop zones. Domaine(s) : 630. Synonyme(s)zone cultivée ;zone agricole ;Terre cultivée ;Terre agricole ;parcelle cultivée ;espace cultivé ;espace agricole ;champ cultivé zone de culture |



Etendre la recherche sur niveau(x) vers le bas
Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands / Emmanuelle Vaudour in International journal of applied Earth observation and geoinformation, vol 96 (April 2021)
![]()
[article]
Titre : Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands Type de document : Article/Communication Auteurs : Emmanuelle Vaudour, Auteur ; Cécile Gomez, Auteur ; Philippe Lagacherie, Auteur Année de publication : 2021 Article en page(s) : n° 102277 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] mosaïquage d'images
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] puits de carbone
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] teneur en carbone
[Termes descripteurs IGN] terre arable
[Termes descripteurs IGN] Yvelines (78)Résumé : (auteur) The spatial assessment of soil organic carbon (SOC) is a major environmental challenge, notably for evaluating soil carbon stocks. Recent works have shown the capability of Sentinel-2 to predict SOC content over temperate agroecosystems characterized with annual crops. However, because spectral models are only applicable on bare soils, the mapping of SOC is often obtained on limited areas. A possible improvement for increasing the number of pixels on which SOC can be retrieved by inverting bare soil reflectance spectra, consists of using optical images acquired at several dates. This study compares different approaches of Sentinel–2 images temporal mosaicking to produce a composite multi-date bare soil image for predicting SOC content over agricultural topsoils. A first approach for temporal mosaicking was based on a per-pixel selection and was driven by soil surface characteristics: bare soil or dry bare soil with/without removing dry vegetation. A second approach for creating composite images was based on a per-date selection and driven either by the models performance from single-date, or by average soil surface indicators of bare soil or dry bare soil. To characterize soil surface, Sentinel-1 (S1)-derived soil moisture and/or spectral indices such as normalized difference vegetation index (NDVI), Normalized Burn Ratio 2 (NBR2), bare soil index (BSI) and a soil surface moisture index (S2WI) were used either separately or in combination. This study highlighted the following results: i) none of the temporal mosaic images improved model performance for SOC prediction compared to the best single-date image; ii) of the per-pixel approaches, temporal mosaics driven by the S1-derived moisture content, and to a lesser extent, by NBR2 index, outperformed the mosaic driven by the BSI index but they did not increase the bare soil area predicted; iii) of the per-date approaches, the best trade-off between predicted area and model performance was achieved from the temporal mosaic driven by the S1-derived moisture content (R2 ~ 0.5, RPD ~ 1.4, RMSE ~ 3.7 g.kg-1) which enabled to more than double (*2.44) the predicted area. This study suggests that a number of bare soil mosaics based on several indicators (moisture, bare soil, roughness…), preferably in combination, might maintain acceptable accuracies for SOC prediction whilst extending over larger areas than single-date images. Numéro de notice : A2021-238 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2020.102277 date de publication en ligne : 14/12/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102277 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97258
in International journal of applied Earth observation and geoinformation > vol 96 (April 2021) . - n° 102277[article]Agricultural land partitioning model based on irrigation efficiency using a multi‐objective artificial bee colony algorithm / Mehrdad Bijandi in Transactions in GIS, Vol 25 n° 1 (February 2021)
![]()
[article]
Titre : Agricultural land partitioning model based on irrigation efficiency using a multi‐objective artificial bee colony algorithm Type de document : Article/Communication Auteurs : Mehrdad Bijandi, Auteur ; Mohammad Karimi, Auteur ; Bahman Farhadi Bansouleh, Auteur ; Wim van der Knaap, Auteur Année de publication : 2021 Article en page(s) : pp 551 - 574 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] données topographiques
[Termes descripteurs IGN] irrigation
[Termes descripteurs IGN] optimisation par colonie de fourmis
[Termes descripteurs IGN] parcelle agricole
[Termes descripteurs IGN] planification
[Termes descripteurs IGN] remembrement agricole
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] utilisation du solRésumé : (Auteur) In the process of agricultural land consolidation, the land parcels are optimally redesigned and rearranged in such a way that the dimensions of the resulting parcels are proportional to agricultural criteria such as irrigation discharge, soil texture, and cropping pattern. Besides these criteria, spatial factors like slope, road accessibility, volume of earthwork, and geometrical factors such as size and shape of parcels are also included in the design process of agricultural land partitioning. In this study, a land partitioning model was proposed using a multi‐objective artificial bee colony algorithm (MOABC‐LP) taking into consideration the mentioned factors. Initially, a feasible dimension range of parcels in a block was calculated based on irrigation efficiency. Two partitioning layouts were defined according to the topography and geometry of blocks. The proposed method was applied to a real study area and the results suggest that the land partitioning plan obtained by the MOABC‐LP model, in comparison with a designer's plan, not only makes the shape and size of parcels more compatible with the topographical and agricultural conditions of each block, but also reduces their cut‐and‐fill ratio. Numéro de notice : A2021-210 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12702 date de publication en ligne : 27/10/2020 En ligne : https://doi.org/10.1111/tgis.12702 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97159
in Transactions in GIS > Vol 25 n° 1 (February 2021) . - pp 551 - 574[article]Crop identification by massive processing of multiannual satellite imagery for EU common agriculture policy subsidy control / Adolfo Lozano-Tello in European journal of remote sensing, vol 54 n° 1 (2021)
![]()
[article]
Titre : Crop identification by massive processing of multiannual satellite imagery for EU common agriculture policy subsidy control Type de document : Article/Communication Auteurs : Adolfo Lozano-Tello, Auteur ; Marcos Fernández-Sellers, Auteur ; Elia Quirós, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1 - 12 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] classification pixellaire
[Termes descripteurs IGN] Estrémadure (Espagne)
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] politique agricole commune
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] surveillance agricoleRésumé : (auteur) The early and automatic identification of crops declared by farmers is essential for streamlining European Union Common Agricultural Policy (CAP) payment processes. Currently, field inspections are partial, expensive and entail a considerable delay in the process. Chronological satellite images of cultivated plots can be used so that neural networks can form the model of the declared crop. Once the patterns of a crop are obtained, the correspondence of the declaration with the model of the neural network can be systematically predicted, and can be used for monitoring the CAP. In this article, we propose a learning model with neural networks, using as examples of training the pixels of the cultivated plots from the satellite images over a period of time. We also propose using several years in the training model to generalise the patterns without linking them to the climatic characteristics of a specific year. The article also describes the use of the model in learning the multi-year pattern of tobacco cultivation with very good results. Numéro de notice : A2021-138 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/22797254.2020.1858723 date de publication en ligne : 30/12/2020 En ligne : https://doi.org/10.1080/22797254.2020.1858723 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97012
in European journal of remote sensing > vol 54 n° 1 (2021) . - pp 1 - 12[article]Mapping seasonal agricultural land use types using deep learning on Sentinel-2 image time series / Misganu Debella-Gilo in Remote sensing, Vol 13 n° 2 (January 2021)
![]()
[article]
Titre : Mapping seasonal agricultural land use types using deep learning on Sentinel-2 image time series Type de document : Article/Communication Auteurs : Misganu Debella-Gilo, Auteur ; Arnt Kristian Gjertsen, Auteur Année de publication : 2021 Article en page(s) : n° 289 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] carte d'utilisation du sol
[Termes descripteurs IGN] classification par Perceptron multicouche
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Norvège
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] Soil Adjusted Vegetation Index
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] variation saisonnièreRésumé : (auteur) The size and location of agricultural fields that are in active use and the type of use during the growing season are among the vital information that is needed for the careful planning and forecasting of agricultural production at national and regional scales. In areas where such data are not readily available, an independent seasonal monitoring method is needed. Remote sensing is a widely used tool to map land use types, although there are some limitations that can partly be circumvented by using, among others, multiple observations, careful feature selection and appropriate analysis methods. Here, we used Sentinel-2 satellite image time series (SITS) over the land area of Norway to map three agricultural land use classes: cereal crops, fodder crops (grass) and unused areas. The Multilayer Perceptron (MLP) and two variants of the Convolutional Neural Network (CNN), are implemented on SITS data of four different temporal resolutions. These enabled us to compare twelve model-dataset combinations to identify the model-dataset combination that results in the most accurate predictions. The CNN is implemented in the spectral and temporal dimensions instead of the conventional spatial dimension. Rather than using existing deep learning architectures, an autotuning procedure is implemented so that the model hyperparameters are empirically optimized during the training. The results obtained on held-out test data show that up to 94% overall accuracy and 90% Cohen’s Kappa can be obtained when the 2D CNN is applied on the SITS data with a temporal resolution of 7 days. This is closely followed by the 1D CNN on the same dataset. However, the latter performs better than the former in predicting data outside the training set. It is further observed that cereal is predicted with the highest accuracy, followed by grass. Predicting the unused areas has been found to be difficult as there is no distinct surface condition that is common for all unused areas. Numéro de notice : A2021-198 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13020289 date de publication en ligne : 15/01/2021 En ligne : https://doi.org/10.3390/rs13020289 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97149
in Remote sensing > Vol 13 n° 2 (January 2021) . - n° 289[article]Spatial characterization and distribution modelling of Ensete ventricosum (wild and cultivated) in Ethiopia / Meron Awoke Eshetae in Geocarto international, vol 36 n° 1 ([01/01/2021])
![]()
[article]
Titre : Spatial characterization and distribution modelling of Ensete ventricosum (wild and cultivated) in Ethiopia Type de document : Article/Communication Auteurs : Meron Awoke Eshetae, Auteur ; Binyam Tesfaw Hailu, Auteur ; Sebsebe Demissew, Auteur Année de publication : 2021 Article en page(s) : pp 60 - 75 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] données de terrain
[Termes descripteurs IGN] données environnementales
[Termes descripteurs IGN] entropie maximale
[Termes descripteurs IGN] Ethiopie
[Termes descripteurs IGN] Musa (genre)
[Termes descripteurs IGN] surface cultivéeRésumé : (Auteur) Enset (Ensete ventricosum) feeds around 20 million people in Ethiopia and is arguably the most important crop for food security and rural livelihoods in the country. Therefore, it is significant to know its spatial characterization and distribution in the country. We use spatial overlay analysis and the maximum entropy (MaxEnt) model for characterizing and modelling, respectively. Inputs for the model include 26 environmental variables—19 bioclimatic and seven biophysical—in addition to the geospatial location of enset field data. The model result was validated using Receiver Operating Characteristic curve method and the area under the curve (AUC) with 0.842 for cultivated enset and 0.760 (wild enset). The highest prediction (>0.5) of both varieties occurred in the southwestern, south-central and north-eastern parts of Ethiopia—17,293.67 km2 (cultivated) and 40,402 km2 (wild) area. The presence of both enset is probabilistically higher at the tropic-cool/sub-humid Agroecological Zones. Numéro de notice : A2021-051 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1588392 date de publication en ligne : 10/06/2020 En ligne : https://doi.org/10.1080/10106049.2019.1588392 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96773
in Geocarto international > vol 36 n° 1 [01/01/2021] . - pp 60 - 75[article]The use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution / Dimitri I. Rukhovitch in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkCombination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia / Sanjiwana Arjasakusuma in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkTime series potential assessment for biophysical characterization of orchards and crops in a mixed scenario with Sentinel-1A SAR data / Hemant Sahu in Geocarto international, vol 35 n° 14 ([15/10/2020])
PermalinkForest clear-cuts as habitat for farmland birds and butterflies / Dafne Ram in Forest ecology and management, vol 473 ([01/10/2020])
PermalinkUse of visible and near-infrared reflectance spectroscopy models to determine soil erodibility factor (K) in an ecologically restored watershed / Qinghu Jiang in Remote sensing, vol 12 n° 18 (September 2020)
PermalinkMapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine / Aparna R. Phalke in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkMining regional patterns of land use with adaptive adjacent criteria / Xinmeng Tu in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
PermalinkAccuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets / Lamin R. Mansaray in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkDetecting abandoned farmland using harmonic analysis and machine learning / Heeyeun Yoon in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkImproved crop classification with rotation knowledge using Sentinel-1 and -2 time series / Sébastien Giordano in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 7 (July 2020)
PermalinkAn integrated approach for detection and prediction of greening situation in a typical desert area in China and its human and climatic factors analysis / Lei Zhou in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
PermalinkA convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery / Lucas Prado Osco in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkCombination of linear regression lines to understand the response of Sentinel-1 dual polarization SAR data with crop phenology - case study in Miyazaki, Japan / Emal Wali in Remote sensing, vol 12 n° 1 (January 2020)
PermalinkPermalinkPermalinkCombining machine learning and compact polarimetry for estimating soil moisture from C-Band SAR data / Emanuele Santi in Remote sensing, Vol 11 n° 20 (October 2019)
PermalinkComparative analysis of the accuracy of surface soil moisture estimation from the C- and L-bands / Mohammad El Hajj in International journal of applied Earth observation and geoinformation, vol 82 (October 2019)
PermalinkMultitemporal Landsat-MODIS fusion for cropland drought monitoring in El Salvador / Nguyen-Thanh Son in Geocarto international, vol 34 n° 12 ([15/09/2019])
PermalinkExploring the synergy between Landsat and ASAR towards improving thematic mapping accuracy of optical EO data / Alexander Cass in Applied geomatics, vol 11 n° 3 (September 2019)
PermalinkA generalized space-time OBIA classification scheme to map sugarcane areas at regional scale, using Landsat images time-series and the random forest algorithm / Ana Claudia Dos Santos Luciano in International journal of applied Earth observation and geoinformation, vol 80 (August 2019)
Permalink