Descripteur
Termes descripteurs IGN > 1- Outils - instruments et méthodes > document > document géographique > document cartographique > carte > carte thématique > carte agricole > surface cultivée
surface cultivée
Commentaire :
région agricole, région de cultures, surface agricole, terre agricole, territoire agricole, zone agricole, zone agroclimatique. campagne, biome, géographie agricole. >> culture, déprise agricole, utilisation agricole du sol. >>Terme(s) spécifique(s) : agriculture des régions arides, agriculture en montagne. Equiv. LCSH : Crop zones. Domaine(s) : 630. Synonyme(s)zone cultivée ;zone agricole ;Terre cultivée ;Terre agricole ;parcelle cultivée ;espace cultivé ;espace agricole ;champ cultivé zone de culture |



Etendre la recherche sur niveau(x) vers le bas
Separating the influence of vegetation changes in polarimetric differential SAR interferometry / Virginia Brancato in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
![]()
[article]
Titre : Separating the influence of vegetation changes in polarimetric differential SAR interferometry Type de document : Article/Communication Auteurs : Virginia Brancato, Auteur ; Irena Hajnsek, Auteur Année de publication : 2018 Article en page(s) : pp 6871 - 6883 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] biomasse
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image AIRSAR
[Termes descripteurs IGN] interferométrie différentielle
[Termes descripteurs IGN] interféromètrie par radar à antenne synthétique
[Termes descripteurs IGN] polarimétrie radar
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] télédétection en hyperfréquenceRésumé : (auteur) Soil moisture and wet biomass changes between two noninstantaneous SAR observations markedly affect the displacement estimates obtainable with Differential Interferometric Synthetic Aperture Radar (DInSAR). The separation, the modeling of these influences besides their uncoupling from the displacement signal, and the atmospheric disturbances are still unsolved issues for several repeat-pass interferometric applications. This paper focuses on the separation of vegetation changes from the other phase contributions affecting repeat-pass measurements over vegetated areas. These phase terms mainly relate to changes in soil moisture, atmospheric delays, and surface deformation. The separation is achieved with a first-order scattering solution decomposing the observed HH and VV DInSAR phases in the sum of several phase terms. The latter mainly consider the changes in soil surface scattering and in the two-way propagation through a vertically oriented vegetation canopy. No assumption is made on the spatiotemporal evolution of the displacement and atmosphere. The overall approach is tested on a L-band data set acquired over an agricultural area. Upon calibration, the model allows for estimating changes in wet biomass based on the nonzero HH–VV DInSAR phase difference observed over several birefringent agricultural fields. The obtained biomass estimates provide then a correction for the effect of vegetation changes on the observed HH and VV DInSAR phases. Deprived of the vegetation contribution, the remainder phase terms can be more easily explored for further analyses, e.g., the estimation of soil moisture changes and/or surface movements in vertically oriented vegetated areas. Numéro de notice : A2018-551 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2845368 date de publication en ligne : 14/08/2018 En ligne : http://dx.doi.org/10.1109/TGRS.2018.2845368 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91639
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 12 (December 2018) . - pp 6871 - 6883[article]Object-based crop classification using multi-temporal SPOT-5 imagery and textural features with a Random Forest classifier / Huanxue Zhang in Geocarto international, vol 33 n° 10 (October 2018)
![]()
[article]
Titre : Object-based crop classification using multi-temporal SPOT-5 imagery and textural features with a Random Forest classifier Type de document : Article/Communication Auteurs : Huanxue Zhang, Auteur ; Qiangzi Li, Auteur ; Jiangui Liu, Auteur ; Taifeng Dong, Auteur ; Heather McNairn, Auteur Année de publication : 2018 Article en page(s) : pp 1017 - 1035 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] bande spectrale
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] corrélation par régions de niveaux de gris
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] image SPOT 5
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] limite de terrain
[Termes descripteurs IGN] Ontario (Canada)
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] surveillance agricole
[Termes descripteurs IGN] texture
[Termes descripteurs IGN] variogrammeRésumé : (auteur) In this study, an object-based image analysis (OBIA) approach was developed to classify field crops using multi-temporal SPOT-5 images with a random forest (RF) classifier. A wide range of features, including the spectral reflectance, vegetation indices (VIs), textural features based on the grey-level co-occurrence matrix (GLCM) and textural features based on geostatistical semivariogram (GST) were extracted for classification, and their performance was evaluated with the RF variable importance measures. Results showed that the best segmentation quality was achieved using the SPOT image acquired in September, with a scale parameter of 40. The spectral reflectance and the GST had a stronger contribution to crop classification than the VIs and GLCM textures. A subset of 60 features was selected using the RF-based feature selection (FS) method, and in this subset, the near-infrared reflectance and the image acquired in August (jointing and heading stages) were found to be the best for crop classification. Numéro de notice : A2019-049 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2017.1333533 date de publication en ligne : 23/06/2017 En ligne : https://doi.org/10.1080/10106049.2017.1333533 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92063
in Geocarto international > vol 33 n° 10 (October 2018) . - pp 1017 - 1035[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2018041 GEO Revue Centre de documentation Revues en salle Disponible Conception d’une méthode radar de suivi bimensuel des déforestations et d’une méthode optique de classification d’occupation des sols / Luc Baudoux (2018)
![]()
Titre : Conception d’une méthode radar de suivi bimensuel des déforestations et d’une méthode optique de classification d’occupation des sols Type de document : Mémoire Auteurs : Luc Baudoux , Auteur
Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2018 Importance : 54 p. Format : 21 x 30 cm Note générale : bibliographie
Rapport de projet pluridisciplinaire, cycle Ingénieur 2e annéeLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification pixellaire
[Termes descripteurs IGN] déboisement
[Termes descripteurs IGN] enjeu
[Termes descripteurs IGN] Guyane (département français)
[Termes descripteurs IGN] image Radarsat
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] masque
[Termes descripteurs IGN] restauration d'image
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] surveillance forestièreIndex. décimale : PROJET Rapports de projet - stage des ingénieurs de 2e année Résumé : (auteur) Dans le cadre de ses missions d’aménagement et de surveillance du territoire, la Direction de l’alimentation, de l’agriculture et de la forêt de Guyane a besoin d’un produit cartographique fiable et régulièrement actualisé. Pour répondre à ce besoin est venue l’idée d’utiliser des techniques de télédétection au sein du service afin de compléter la méthode actuelle basée sur la photo-interprétation. Dans ce contexte, mon stage a eu avec pour objectif principal de développer une méthode de suivi bimensuel des déforestations et pour objectif secondaire de proposer une technique de classification d’occupation des sols. Il fallait également former les agents du service aux concepts sous-jacents ainsi qu’à l’utilisation des scripts développés. L‘étude des déforestations vise à permettre la détection de zones déforestées supérieures à un hectare avec un retard de l’ordre des 15 jours. En raison de la nébulosité quasi permanente en Guyane, j’ai proposé l’utilisation de la technologie satellitaire radar SAR Sentinel 1 capable d’observer le sol même à travers un épais couvert nuageux. Les résultats obtenus sur une zone d’étude de 1300 km2 atteignent un taux de détection de 100% sur l’année 2017 pour les surfaces supérieures à 1 hectare. Le retard estimé de détection est, quant à lui, conforme aux 15 jours escomptés. La classification d’occupation des sols a pour objectif la réalisation d’une cartographie annuelle d’occupation des sols distinguant le cultivé du non cultivé. La solution proposée dans ce rapport repose sur une classification supervisée à partir d’imagerie satellitaire Sentinel 2. Les résultats obtenus parviennent à une première distinction entre le cultivé et le non cultivé, mais la méthode devra être améliorée afin de permettre le traitement automatisé de multiples images et d’augmenter le nombre de classes. Note de contenu : Introduction
1- Contextualisation
2- Méthodologies
3- Analyse des résultats
ConclusionNuméro de notice : 21827 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Mémoire de projet pluridisciplinaire Organisme de stage : Direction de l’alimentation, de l’agriculture et de la forêt de Guyane Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91319 Documents numériques
peut être téléchargé
Conception d’une méthode radar... - pdf auteurAdobe Acrobat PDFEstimation of surface roughness over bare agricultural soil from Sentinel-1 data / Mohammad Choker (2018)
![]()
contenu dans HAL Hyper articles en ligne / Centre pour la Communication Scientifique Directe CCSD (2000)
Titre : Estimation of surface roughness over bare agricultural soil from Sentinel-1 data Type de document : Thèse/HDR Auteurs : Mohammad Choker, Auteur ; Nicolas Baghdadi, Directeur de thèse ; Mehrez Zribi, Directeur de thèse Editeur : AgroParisTech Année de publication : 2018 Importance : 214 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse pour obtenir le grade de Docteur de l'Institut des Sciences et Industries du Vivant et de l'Environnement, AgroParisTech, GéomatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] écho radar
[Termes descripteurs IGN] état de surface du sol
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image Cosmo-Skymed
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] image TerraSAR-X
[Termes descripteurs IGN] modèle de rétrodiffusion
[Termes descripteurs IGN] polarisation
[Termes descripteurs IGN] rugosité du sol
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] télédétection en hyperfréquenceRésumé : (auteur) Spatial remote sensing is of paramount importance for mapping and monitoring environmental problems. Its interest lies in the ability of space satellite sensors in providing permanent information of the planet, at local, regional and global scales. Also, it provides spatial and repetitive territories visions and ecosystem views. Radar remote sensing has shown great potential in recent years for the characterization of soil surface conditions. The state of the soil surface, in particular moisture and roughness, has a fundamental influence on the distribution of rainfall between infiltration, surface retention and runoff. In addition, it plays an essential role in surface hydrological processes and those associated with erosion and evapotranspiration processes. Characterization and consideration of these surface conditions have been recently considered as an important issue for physically based modeling of hydrological processes or for surface-atmosphere coupling. In this context and for several years, several scientific studies have shown the potential of active microwave data for estimation of the soil moisture and the surface roughness.New SAR (Synthetic Aperture Radar) systems have opened new perspectives for earth observation through improved spatial resolution (metric on TerraSAR-X and COSMO-SkyMed) and temporal resolution (TerraSAR-X, COSMO-SkyMed, Sentinel-1) . The recent availability of new Sentinel-1 C-band radar sensors (free and open access) makes it essential to evaluate the potential of Sentinel-1 data for the characterization of soil surface conditions and in particular surface roughness.The work revolves around three parts. The first part consist of evaluation of the most used radar backscattering models (IEM, Oh, Dubois, and AIEM) using a wide dataset of SAR data and experimental soil measurements. This evaluation gives the ability to find the most robust backscattering model that simulates the radar signal with good agreement in order to use later in the inversion procedure of the radar signal for estimating the soil roughness. The second research axe of this thesis consists of proposing an empirical radar backscattering model for HH, HV and VV polarizations. This new model will be developed using a large real dataset. This new model also will be used in the inversion procedure of the radar signal for estimating the soil roughness. The last axe of this thesis consists of producing a method to invert the radar signal using neural networks. The objective is to evaluate the potential of Sentinel-1 data for estimating surface roughness. These neural networks will be trained using wide synthetic dataset produced from the radar backscattering models chosen (IEM calibrated by Baghdadi and the new proposed model) and validated using two datasets: one synthetic dataset and one real (Sentinel 1 images and in-situ measurements). The real datasets are collected from Tunisia (Kairouan) and France (Versailles). Note de contenu : 1- Introduction
2- Generalities
3- Evaluation of radar backscattering models
4- A new empirical model for radar scattering from bare soil surfaces
5- Estimation of soil roughness using neural networks from sentinel-1 SAR data
6- General conclusion and perspectivesNuméro de notice : 25595 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Géomatique : Paris : 2018 Organisme de stage : TETIS (Montpellier) DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-02293194/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95218 Fusion of RADARSAT-2 and multispectral optical remote sensing data for LULC extraction in a tropical agricultural area / Mohamed Barakat A. Gibril in Geocarto international, vol 32 n° 7 (July 2017)
![]()
[article]
Titre : Fusion of RADARSAT-2 and multispectral optical remote sensing data for LULC extraction in a tropical agricultural area Type de document : Article/Communication Auteurs : Mohamed Barakat A. Gibril, Auteur ; Suzana Bakar, Auteur ; Kouame Yao, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 735 - 748 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] classification pixellaire
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image optique
[Termes descripteurs IGN] image radar
[Termes descripteurs IGN] image Radarsat
[Termes descripteurs IGN] Malaisie
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] utilisation du sol
[Termes descripteurs IGN] zone intertropicaleRésumé : (Auteur) In this study, we investigated the performance of different fusion and classification techniques for land cover mapping in Hilir Perak, Peninsula Malaysia using RADAR and Landsat-8 images in a predominantly agricultural area. The fusion methods used are Brovey Transform, Wavelet Transform, Ehlers and Layer Stacking and their results classified into seven different land cover classes which include (1) pixel-based classifiers (spectral angle mapper (SAM), maximum likelihood (ML), support vector machine (SVM)) and (2) Object-based (rule-based and standard nearest neighbour (NN)) classifiers. The result shows that pixel-based classification achieved maximum accuracy of the optical data classification using SVM in Landsat-8 with 74.96% accuracy compared to SAM and ML. For multisource data classification, the highest overall accuracy recorded for layer stacking (SVM) was 79.78%, Ehlers fusion (SVM) with 45.57%, Brovey fusion (SVM) with 63.70% and Wavelet fusion (SVM) 61.16%. And for object-based classifiers, the overall classification accuracy is 95.35% for rule-based and 76.33% for NN classifier, respectively. Based on the analysis of their performances, object-based and the rule-based classifiers produced the best classification accuracy from the fused images. Numéro de notice : A2017-453 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2016.1170893 date de publication en ligne : 15/04/2016 En ligne : http://dx.doi.org/10.1080/10106049.2016.1170893 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86373
in Geocarto international > vol 32 n° 7 (July 2017) . - pp 735 - 748[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2017071 SL Revue Centre de documentation Revues en salle Disponible Agricultural cropland mapping using black-and-white aerial photography, Object-Based Image Analysis and Random Forests / M.F.A. Vogels in International journal of applied Earth observation and geoinformation, vol 54 (February 2017)
PermalinkPermalinkContributions méthodologiques pour la caractérisation des milieux par imagerie optique et lidar / Nesrine Chehata (2017)
PermalinkSols artificialisés et processus d’artificialisation des sols : déterminants, impacts et leviers d’action / B. Béchet (2017)
![]()
PermalinkTélédétection pour l'observation des surfaces continentales, Volume 3. Observation des surfaces continentales par télédétection 1 / Nicolas Baghdadi (2017)
PermalinkCHP toolkit : case study of LAIe sensitivity to discontinuity of canopy cover in fruit plantations / Karolina D. Fieber in IEEE Transactions on geoscience and remote sensing, vol 54 n° 9 (September 2016)
PermalinkUse of SAR data for detecting floodwater in urban and agricultural areas: the role of the interferometric coherence / Luca Pulvirenti in IEEE Transactions on geoscience and remote sensing, vol 54 n° 3 (March 2016)
PermalinkPermalinkExtraction des zones cohérentes par l’analyse spatio-temporelle d’images de télédétection / Thomas Guyet in Revue internationale de géomatique, vol 25 n° 4 (octobre - décembre 2015)
PermalinkUtilisation des technologies géospatiales pour l'évaluation des transformations spatiales dues aux pressions anthropiques dans le canton Afféma (Sud-est ivoirien) / Armand Kangah in Photo interpretation, European journal of applied remote sensing, vol 51 n° 3 (septembre 2015)
Permalink