Descripteur


Etendre la recherche sur niveau(x) vers le bas
Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS) / Langning Huo in Remote sensing of environment, Vol 255 (March 2021)
![]()
[article]
Titre : Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS) Type de document : Article/Communication Auteurs : Langning Huo, Auteur ; Henrik J. Persson, Auteur ; Eva Lindberg, Auteur Année de publication : 2021 Article en page(s) : n° 112240 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] bande infrarouge
[Termes descripteurs IGN] écho radar
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] indice de stress
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] insecte nuisible
[Termes descripteurs IGN] maladie parasitaire
[Termes descripteurs IGN] picea mariana
[Termes descripteurs IGN] scolyte
[Termes descripteurs IGN] signature spectrale
[Termes descripteurs IGN] SuèdeRésumé : (auteur) The European spruce bark beetle (Ips typographus [L.]) is one of the most damaging pest insects of European spruce forests. A crucial measure in pest control is the removal of infested trees before the beetles leave the bark, which generally happens before the end of June. However, stressed tree crowns do not show any significant color changes in the visible spectrum at this early-stage of infestation, making early detection difficult. In order to detect the related forest stress at an early stage, we investigated the differences in radar and spectral signals of healthy and stressed trees. How the characteristics of stressed trees changed over time was analyzed for the whole vegetation season, which covered the period before attacks (April), early-stage infestation (‘green-attacks’, May to July), and middle to late-stage infestation (August to October). The results show that spectral differences already existed at the beginning of the vegetation season, before the attacks. The spectral separability between the healthy and infested samples did not change significantly during the ‘green-attack’ stage. The results indicate that the trees were stressed before the attacks and had spectral signatures that differed from healthy ones. These stress-induced spectral changes could be more efficient indicators of early infestations than the ‘green-attack’ symptoms. In this study we used Sentinel-1 and 2 images of a test site in southern Sweden from April to October in 2018 and 2019. The red and SWIR bands from Sentinel-2 showed the highest separability of healthy and stressed samples. The backscatter from Sentinel-1 and additional bands from Sentinel-2 contributed only slightly in the Random Forest classification models. We therefore propose the Normalized Distance Red & SWIR (NDRS) index as a new index based on our observations and the linear relationship between the red and SWIR bands. This index identified stressed forest with accuracies from 0.80 to 0.88 before the attacks, from 0.80 to 0.82 in the early-stage infestation, and from 0.81 to 0.91 in middle- and late-stage infestations. These accuracies are higher than those attained by established vegetation indices aimed at ‘green-attack’ detection, such as the Normalized Difference Water Index, Ratio Drought Index, and Disease Stress Water Index. By using the proposed method, we highlight the potential of using NDRS with Sentinel-2 images to estimate forest vulnerability to European spruce bark beetle attacks early in the vegetation season. Numéro de notice : A2021-190 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2020.112240 date de publication en ligne : 20/01/2021 En ligne : https://doi.org/10.1016/j.rse.2020.112240 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97111
in Remote sensing of environment > Vol 255 (March 2021) . - n° 112240[article]Crop identification by massive processing of multiannual satellite imagery for EU common agriculture policy subsidy control / Adolfo Lozano-Tello in European journal of remote sensing, vol 54 n° 1 (2021)
![]()
[article]
Titre : Crop identification by massive processing of multiannual satellite imagery for EU common agriculture policy subsidy control Type de document : Article/Communication Auteurs : Adolfo Lozano-Tello, Auteur ; Marcos Fernández-Sellers, Auteur ; Elia Quirós, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1 - 12 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] classification pixellaire
[Termes descripteurs IGN] Estrémadure (Espagne)
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] politique agricole commune
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] surveillance agricoleRésumé : (auteur) The early and automatic identification of crops declared by farmers is essential for streamlining European Union Common Agricultural Policy (CAP) payment processes. Currently, field inspections are partial, expensive and entail a considerable delay in the process. Chronological satellite images of cultivated plots can be used so that neural networks can form the model of the declared crop. Once the patterns of a crop are obtained, the correspondence of the declaration with the model of the neural network can be systematically predicted, and can be used for monitoring the CAP. In this article, we propose a learning model with neural networks, using as examples of training the pixels of the cultivated plots from the satellite images over a period of time. We also propose using several years in the training model to generalise the patterns without linking them to the climatic characteristics of a specific year. The article also describes the use of the model in learning the multi-year pattern of tobacco cultivation with very good results. Numéro de notice : A2021-138 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/22797254.2020.1858723 date de publication en ligne : 30/12/2020 En ligne : https://doi.org/10.1080/22797254.2020.1858723 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97012
in European journal of remote sensing > vol 54 n° 1 (2021) . - pp 1 - 12[article]Developing a site index model for P. Pinaster stands in NW Spain by combining bi-temporal ALS data and environmental data / Juan Guerra-Hernández in Forest ecology and management, vol 481 (February 2021)
![]()
[article]
Titre : Developing a site index model for P. Pinaster stands in NW Spain by combining bi-temporal ALS data and environmental data Type de document : Article/Communication Auteurs : Juan Guerra-Hernández, Auteur ; Stefano Arellano-Pérez, Auteur ; Eduardo González-Ferreiro, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 118690 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Inventaire forestier
[Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] anomalie de croissance végétale
[Termes descripteurs IGN] balayage laser
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] Galice (Espagne)
[Termes descripteurs IGN] gestion forestière
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] inventaire forestier étranger (données)
[Termes descripteurs IGN] Pinus pinaster
[Termes descripteurs IGN] régression multivariée par spline adaptative
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] série temporelleRésumé : (auteur) Site index (SI) is a common measure of forest site productivity, serving as a valuable baseline for forest management. The main objective of this study was to develop a SI model for Pinus pinaster Ait. in north-west Spain by combining bi–temporal, low–density airborne laser scanning (ALS) data (acquired in the periods 2009–2011 and 2015–2017) with climatic, edaphic and physiographical data. Site productivity, assessed by site quality curves, was modelled using an age-independent difference equation method based on ALS metrics and environmental variables. For the model development process, we used data from 156 sample plots in pure and even-aged P. pinaster stands distributed throughout Galicia (NW Spain) and measured in the Spanish National Forest Inventory (SNFI). The generalized algebraic difference approach (GADA) formulation was tested by using two different base equations for modelling the dominant height growth (ΔH) from ALS variables. The GADA formulation derived from the Bertalanffy’s base model produced the best estimates of dominant height (H) for P. pinaster stands in Galicia. Use of the proposed model to estimate ΔH for a new pine stand requires two ALS data sets for estimating site-specific (local) parameters. To enable use of the model when such information is not available, the relationship between the values of the site-specific parameter and environmental variables was described using Multivariate Adaptive Regression Splines (MARS). Use of the MARS equation enabled us to develop spatially-explicit predictive maps of the site-specific parameter values, which can be used together with the GADA model to derive ΔH curves and SI estimates for P. pinaster stands in the whole study region. Numéro de notice : A2021-225 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2020.118690 date de publication en ligne : 01/11/2021 En ligne : https://doi.org/10.1016/j.foreco.2020.118690 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97200
in Forest ecology and management > vol 481 (February 2021) . - n° 118690[article]Geo-spatially modelling dengue epidemics in urban cities: a case study of Lahore, Pakistan / Muhammad Imran in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : Geo-spatially modelling dengue epidemics in urban cities: a case study of Lahore, Pakistan Type de document : Article/Communication Auteurs : Muhammad Imran, Auteur ; Yasra Hamid, Auteur ; Abeer Mazher, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 197 - 211 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] diptère
[Termes descripteurs IGN] image Landsat
[Termes descripteurs IGN] maladie tropicale
[Termes descripteurs IGN] modélisation spatiale
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Pakistan
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] régression logistique
[Termes descripteurs IGN] risque sanitaire
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] zone intertropicale
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) The study objective is to predict the epidemiological impact of dengue fever arbovirosis in urban tropical areas of Pakistan. To do so, we used the GPS-based data of the Aedes larvae collected during 2014–2015 in Lahore. We developed a Geographically Weighted Logistic Regression (GWLR) model for Geospatially predicting larvae presence or absence in Lahore. Data on rainfall, temperature are included along with time series of the normalized difference vegetation index (NDVI) derived from Landsat imagery. We observed a high spatial variability of the GWLR parameter estimates of these variables in the study area. The GWLR model significantly (R2a = 0.78) explained the presence or absence of Aedes larvae with temperature, rainfall and NDVI variables in South and Southeast of the study area. In the North and North-West, however, GWLR relationships were observed weak in highly populated areas. Interpolating GWLR coefficients generate more accurate maps of Aedes larvae presence or absence. Numéro de notice : A2021-118 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1614100 date de publication en ligne : 10/06/2020 En ligne : https://doi.org/10.1080/10106049.2019.1614100 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96932
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 197 - 211[article]GTP-PNet: A residual learning network based on gradient transformation prior for pansharpening / Hao Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : GTP-PNet: A residual learning network based on gradient transformation prior for pansharpening Type de document : Article/Communication Auteurs : Hao Zhang, Auteur ; Jiayi Ma, Auteur Année de publication : 2021 Article en page(s) : pp 223 - 239 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] gradient
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image panchromatique
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] pansharpening (fusion d'images)
[Termes descripteurs IGN] régressionRésumé : (auteur) Pansharpening aims to fuse low-resolution multi-spectral image and high-resolution panchromatic (PAN) image to produce a high-resolution multi-spectral (HRMS) image. In this paper, a new residual learning network based on gradient transformation prior, termed as GTP-PNet, is proposed to generate the high-quality HRMS image with accurate spectral distribution as well as reasonable spatial structure. Different from previous deep models that only rely on supervision of the HRMS reference image, we introduce the gradient transformation prior to the deep model, so as to improve the solution accuracy. Our model consists of two networks, namely gradient transformation network (TNet) and pansharpening network (PNet). TNet is committed to seeking the nonlinear mapping between gradients of PAN and HRMS images, which is essentially a spatial relationship regression of imaging bands in different ranges. PNet is the residual learning network used to generate the HRMS image, which is not only supervised by the HRMS reference image, but also constrained by the trained TNet. As a result, the HRMS image generated by PNet not only approximates the HRMS reference image in the spectral distribution, but also conforms to the gradient transformation prior in the spatial structure. Experimental results demonstrate the significant superiority of our method over the current state-of-the-arts in terms of both subjective visual effect and quantitative metrics. We also apply our method to produce the HR normalized difference vegetation index in remote sensing, which can achieve the best performance. Moreover, our method is much competitive compared with the state-of-the-art alternatives in running efficiency. Numéro de notice : A2021-089 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.014 date de publication en ligne : 11/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.014 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96859
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 223 - 239[article]Optimization of multi-ecosystem model ensembles to simulate vegetation growth at the global scale / Linling Tang in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkSpruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery / Rajeev Bhattarai in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
PermalinkMapping seasonal agricultural land use types using deep learning on Sentinel-2 image time series / Misganu Debella-Gilo in Remote sensing, Vol 13 n° 2 (January 2021)
PermalinkIntegrating multilayer perceptron neural nets with hybrid ensemble classifiers for deforestation probability assessment in Eastern India / Sunil Saha in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)
PermalinkRetrieving surface soil water content using a soil texture adjusted vegetation index and unmanned aerial system images / Haibin Gu in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkThe use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution / Dimitri I. Rukhovitch in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkExploring the inclusion of Sentinel-2 MSI texture metrics in above-ground biomass estimation in the community forest of Nepal / Santa Pandit in Geocarto international, vol 35 n° 16 ([01/12/2020])
PermalinkA framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December 2020)
PermalinkA novel intelligent classification method for urban green space based on high-resolution remote sensing images / Zhiyu Xu in Remote sensing, vol 12 n° 22 (December 2020)
PermalinkPolarization of light reflected by grass: modeling using visible-sunlit areas / Bin Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 12 (December 2020)
Permalink