Descripteur
Documents disponibles dans cette catégorie (616)


Etendre la recherche sur niveau(x) vers le bas
Amazon forest spectral seasonality is consistent across sensor resolutions and driven by leaf demography / Nathan B. Gonçalves in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
![]()
[article]
Titre : Amazon forest spectral seasonality is consistent across sensor resolutions and driven by leaf demography Type de document : Article/Communication Auteurs : Nathan B. Gonçalves, Auteur ; Ricardo Dalagnol, Auteur ; Jin Wu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 93 - 104 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Amazonie
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] forêt tropicale
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-OLI
[Termes IGN] image proche infrarouge
[Termes IGN] image Terra-MODIS
[Termes IGN] indice de végétation
[Termes IGN] Leaf Area Index
[Termes IGN] réflectance spectrale
[Termes IGN] sécheresse
[Termes IGN] variation saisonnièreRésumé : (Auteur) Controversy surrounds the reported dry season greening of the Central Amazon forests based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS). As the solar zenith angle decreases during the dry season, it affects the sub-pixel shade content and artificially increases Near-infrared (NIR) reflectance and EVI. MODIS' coarse resolution also creates a challenge for cloud and terrain filtering. To reduce these artifacts and then validate MODIS seasonal spectral patterns we use 16 years of 1 km resolution MODIS-MAIAC (Multi-Angle Implementation of Atmospheric Correction) images, corrected to a nadir view and 45° solar zenith angle, together with an improved cloud filter. Then we show that the 30 m Landsat-8 Operational Land Imager (OLI) surface reflectance over two Landsat scenes provides independent evidence supporting the MODIS-MAIAC seasonality for EVI, NIR, and GCC (an additional important vegetation index, green chromatic coordinate). Our empirical method for controlling for sun-sensor geometry effects in Landsat scenes encompasses the use of seasonally distinct images that have similar solar zenith angles and cloud-free pixels on flat uplands having the same phase angle. We extended this validation to nine Amazon sub-basins comprising ∼546 Landsat-8 images. Our study shows that the dry-season green-up pattern observed by MODIS is corroborated by Landsat-8, and is independent of satellite data artifacts. To investigate the mechanisms driving these seasonal changes we further used Central Amazon tower-mounted RGB cameras providing a 4-year record at the Amazon Tall Tower (ATTO, 2°8′36″S, 59°0′2″W) and a 7-year record at the Manaus k34 tower (2°36′33″ S, 60°12′33″W) to obtain monthly upper canopy green leaf cover (a proxy for Leaf Area Index - LAI) and monthly leaf age class abundances (based on the age since leaf flushing, by crown). These were compared to seasonal patterns of GCC and EVI in small MODIS-MAIAC windows centered on each tower. MODIS-MAIAC GCC was positively correlated with newly flushed leaves (R2 = 0.76 and 0.44 at ATTO and k34, respectively). EVI correlated strongly with the abundance of mature leaves (R2 = 0.82 and 0.80) but was poorly correlated with LAI (R2 = 0.20 and 0.41, respectively). Therefore, seasonal spectral patterns in the Central Amazon are likely controlled by leaf age variation, not quantity of leaf area. Numéro de notice : A2023-065 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.001 Date de publication en ligne : 04/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102423
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 93 - 104[article]Decadal assessment of agricultural drought in the context of land use land cover change using MODIS multivariate spectral index time-series data / Thuong V. Tran in GIScience and remote sensing, vol 60 n° 1 (2023)
![]()
[article]
Titre : Decadal assessment of agricultural drought in the context of land use land cover change using MODIS multivariate spectral index time-series data Type de document : Article/Communication Auteurs : Thuong V. Tran, Auteur ; David Bruce, Auteur ; Cho-Ying Huang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2163070 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spectrale
[Termes IGN] changement d'occupation du sol
[Termes IGN] image Terra-MODIS
[Termes IGN] indice d'humidité
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] parcelle agricole
[Termes IGN] sécheresse
[Termes IGN] série temporelle
[Termes IGN] surveillance agricole
[Termes IGN] variation temporelle
[Termes IGN] Viet NamRésumé : (auteur) Using a multivariate drought index that incorporates important environmental variables and is suitable for a specific geographical region is essential to fully understanding the pattern and impacts of drought severity. This study applied feature scaling algorithms to MODIS time-series imagery to develop an integrated Multivariate Drought Index (iMDI). The iMDI incorporates the vegetation condition index (VCI), the temperature condition index (TCI), and the evaporative stress index (ESI). The 54,474 km2 Vietnamese Central Highlands region, which has been significantly affected by drought severity for several decades, was selected as a test site to assess the feasibility of the iMDI. Spearman correlation between the iMDI and other commonly used spectral drought indices (i.e. the Drought Severity Index (DSI–12) and the annual Vegetation Health Index (VHI–12)) and ground-based drought indices (i.e. the Standardized Precipitation Index (SPI–12) and the Reconnaissance Drought Index (RDI–12)) was employed to evaluate performance of the proposed drought index. Pixel-based linear regression together with clustering models of the iMDI time-series was applied to characterize the spatiotemporal pattern of drought from 2001 to 2020. In addition, a persistent area of LULC types (i.e. forests, croplands, and shrubland) during the 2001–2020 period was used to understand drought variation in relation to LULC. Results suggested that the iMDI outperformed the other spectral drought indices (r > 0.6; p Numéro de notice : A2023-042 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/15481603.2022.2163070 Date de publication en ligne : 03/01/2023 En ligne : https://doi.org/10.1080/15481603.2022.2163070 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102329
in GIScience and remote sensing > vol 60 n° 1 (2023) . - n° 2163070[article]How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data / Rongfang Lyu in Sustainable Cities and Society, vol 88 (January 2023)
![]()
[article]
Titre : How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data Type de document : Article/Communication Auteurs : Rongfang Lyu, Auteur ; Jili Pang, Auteur ; Xiaolei Tian, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104287 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Chine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espace vert
[Termes IGN] hauteur du bâti
[Termes IGN] ilot thermique urbain
[Termes IGN] image captée par drone
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] Leaf Area Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] optimisation (mathématiques)
[Termes IGN] paysage urbain
[Termes IGN] plan d'eau
[Termes IGN] planification urbaine
[Termes IGN] réseau bayesien
[Termes IGN] semis de points
[Termes IGN] température au solRésumé : (auteur) The systematical exploration of how two-dimensional (2D) and three-dimensional (3D) features of urban landscapes influence land surface temperature (LST) is still limited. Therefore, we investigated the influence of three main urban landscapes—urban green space, impervious land, and water bodies on LST, with a particular focus on the 3D vegetation metrics of green volume (GV) and leaf area index (LAI). We used Yinchuan City, China, as a case study. We quantified the impacts of various 2D/3D metrics of the three landscape types on LST using a random forest analysis with multiple sources, including Unmanned Aerial Vehicle (UAV) and remote sensing images. We then generated a Bayesian Network (BN) model to identify the optimal configurations for each landscape type. We found that using 11 of the 31 metrics considered, our model could explain 81.8% of the observed variance in LST of Yinchuan City. Among those, water body metrics were the most important, followed by vegetation abundance, impervious land metrics, and landscape pattern of urban green space. The mean classification error of the BN model was only 22.9%. We suggest that this makes the BN model a promising support tool for urban planning with a view to urban heat island mitigation. Our findings also stress the importance of considering both 2D and 3D features when considering urban cooling strategies. Numéro de notice : A2023-007 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.scs.2022.104287 Date de publication en ligne : 02/11/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104287 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102095
in Sustainable Cities and Society > vol 88 (January 2023) . - n° 104287[article]Improving methods to predict aboveground biomass of Pinus sylvestris in urban forest using UFB model, LiDAR and digital hemispherical photography / Ihor Kozak in Urban Forestry & Urban Greening, vol 79 (January 2023)
![]()
[article]
Titre : Improving methods to predict aboveground biomass of Pinus sylvestris in urban forest using UFB model, LiDAR and digital hemispherical photography Type de document : Article/Communication Auteurs : Ihor Kozak, Auteur ; Mikhail Popov, Auteur ; Igor Semko, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 127793 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] biomasse aérienne
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] forêt urbaine
[Termes IGN] houppier
[Termes IGN] image hémisphérique
[Termes IGN] Leaf Area Index
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle de régression
[Termes IGN] modèle numérique de terrain
[Termes IGN] photographie numérique
[Termes IGN] Pinus sylvestris
[Termes IGN] Pologne
[Termes IGN] semis de points
[Termes IGN] surface terrièreRésumé : (auteur) The article proposes methods for combining Airborne Laser Scanning (ALS) with Digital Hemispherical Photography (DHP) data required by the Urban Forest Biomass (UFB) model to predict the aboveground biomass (AGB) of Scotch pine (Pinus sylvestris L.) in urban forests of Lublin (Poland). The article also demonstrates the potential of ALS and DHP data in urban AGB estimation. ALS and Leaf Area Index (LAI) data were calculated using a voxels-vector approach based on the measurements taken at eight permanent sample plots (PSPs). The research was conducted in 2014 and the prediction was made until 2030. It was found that the determination coefficients (R2) for the Basal Area (BA) of the trees are 0.97, and the BA modeling parameters have a high correlation with those observed in the field (model efficiency (ME) 0.94). 83 % growth trajectory based on the measured BA was appropriately modeled using the UFB model (P > 0.9). The results for AGB show that the degree of fitting and accuracy are greatest for the Monte Carlo (MC) simulation technique based on ALS and DHP data (UBF with ALS and DHP) where R2 = 0.98, RMSE = 2.97 t/ha, MAE = 2.35 t/ha, rRMSE = 1.28 %, which performed better than MC simulation technique without ALS and DHP (UBF without ALS and DHP) where R2 = 0.94, RMSE = 4.58 t/ha, MAE = 3.64 t/ha, rRMSE = 3.29 %. The results indicate that the proposed method based on combining the UFB model, LiDAR and DHP allows us to improve the accuracy of the AGB prediction. Numéro de notice : A2023-023 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ufug.2022.127793 Date de publication en ligne : 23/11/2022 En ligne : https://doi.org/10.1016/j.ufug.2022.127793 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102246
in Urban Forestry & Urban Greening > vol 79 (January 2023) . - n° 127793[article]Remote sensing techniques for water management and climate change monitoring in drought areas: case studies in Egypt and Tunisia / Lifan Ji in European journal of remote sensing, vol 56 n° 1 (2023)
![]()
[article]
Titre : Remote sensing techniques for water management and climate change monitoring in drought areas: case studies in Egypt and Tunisia Type de document : Article/Communication Auteurs : Lifan Ji, Auteur ; Yihao Shao, Auteur ; Jianjun Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 1 - 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] changement climatique
[Termes IGN] Egypte
[Termes IGN] gestion de l'eau
[Termes IGN] humidité du sol
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] réseau neuronal artificiel
[Termes IGN] stress hydrique
[Termes IGN] Tunisie
[Termes IGN] zone semi-arideRésumé : (auteur) This study focused on monitoring the water status of vegetation and soil by exploiting the synergy of optical and microwave satellite data with the aim of improving the knowledge of water cycle in cultivated lands in Egyptian Delta and Tunisian areas. Environmental analysis approaches based on optical and synthetic aperture radar data were carried out to set up the basis for future implementation of practical and cost-effective methods for sustainable water use in agriculture. Long-term behaviors of vegetation indices were thus analyzed between 2000 and 2018. By using SAR data from Sentinel-1, an Artificial Neural Network-based algorithm was implemented for estimating soil moisture and monthly maps for 2018 have been generated to be compared with information derived from optical indices. Moreover, a novel drought severity index was developed and applied to available data. The index was obtained by combining vegetation soil difference index, derived from optical data, and soil moisture content derived from SAR data. The proposed index was found capable of complementing optical and microwave sensitivity to drought-related parameters, although ground data are missing for correctly validating the results, by capturing drought patterns and their temporal evolution better than indices based only on microwave or optical data. Numéro de notice : A2023-103 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2022.2157335 Date de publication en ligne : 06/01/2023 En ligne : https://doi.org/10.1080/22797254.2022.2157335 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102430
in European journal of remote sensing > vol 56 n° 1 (2023) . - pp 1 - 16[article]Interactive effects of abiotic factors and biotic agents on Scots pine dieback: A multivariate modeling approach in southeast France / Jean Lemaire in Forest ecology and management, vol 526 (December-15 2022)
PermalinkEstimating 10-m land surface albedo from Sentinel-2 satellite observations using a direct estimation approach with Google Earth Engine / Xingwen Lin in ISPRS Journal of photogrammetry and remote sensing, vol 194 (December 2022)
PermalinkIntegration of geospatial technologies with multiple regression model for urban land use land cover change analysis and its impact on land surface temperature in Jimma City, southwestern Ethiopia / Mitiku Badasa Moisa in Applied geomatics, vol 14 n° 4 (December 2022)
PermalinkThe contribution of understorey vegetation to ecosystem evapotranspiration in boreal and temperate forests: a literature review and analysis / Philippe Balandier in European Journal of Forest Research, vol 141 n° 6 (December 2022)
PermalinkAn advanced bidirectional reflectance factor (BRF) spectral approach for estimating flavonoid content in leaves of Ginkgo plantations / Kai Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 193 (November 2022)
PermalinkModelling and accessing land degradation vulnerability using remote sensing techniques and the analytical hierarchy process approach / Abebe Debele Tolche in Geocarto international, vol 37 n° 24 ([20/10/2022])
PermalinkThe fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas / Jun Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 10 (October 2022)
PermalinkComparing Landsat-8 and Sentinel-2 top of atmosphere and surface reflectance in high latitude regions: case study in Alaska / Jiang Chen in Geocarto international, vol 37 n° 20 ([20/09/2022])
PermalinkForest canopy stratification based on fused, imbalanced and collinear LiDAR and Sentinel-2 metrics / Jakob Wernicke in Remote sensing of environment, vol 279 (September-15 2022)
PermalinkHistorical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine / Luis Carrasco in ISPRS Journal of photogrammetry and remote sensing, vol 191 (September 2022)
Permalink