Descripteur
Termes descripteurs IGN > sciences naturelles > physique > optique > optique physique > radiométrie > signature spectrale > réflectance > réflectance végétale
réflectance végétaleVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Unmanned aerial system multispectral mapping for low and variable solar irradiance conditions: Potential of tensor decomposition / Sheng Wang in ISPRS Journal of photogrammetry and remote sensing, vol 155 (September 2019)
![]()
[article]
Titre : Unmanned aerial system multispectral mapping for low and variable solar irradiance conditions: Potential of tensor decomposition Type de document : Article/Communication Auteurs : Sheng Wang, Auteur ; Andreas Baum, Auteur ; Pablo J. Zarco-Tejada, Auteur ; Carsten Dam-Hansen, Auteur ; Anders Thorseth, Auteur ; Peter Bauer-Gottwein, Auteur ; Filippo Bandini, Auteur ; Monica Garcia, Auteur Année de publication : 2019 Article en page(s) : pp 58 - 71 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] éclairement énergétique
[Termes descripteurs IGN] étalonnage de capteur (imagerie)
[Termes descripteurs IGN] image de drone
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] nébulosité
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] réflectance végétale
[Termes descripteurs IGN] tenseurRésumé : (Auteur) Unlike satellite earth observation, multispectral images acquired by Unmanned Aerial Systems (UAS) provide great opportunities to monitor land surface conditions also in cloudy or overcast weather conditions. This is especially relevant for high latitudes where overcast and cloudy days are common. However, multispectral imagery acquired by miniaturized UAS sensors under such conditions tend to present low brightness and dynamic ranges, and high noise levels. Additionally, cloud shadows over space (within one image) and time (across images) are frequent in UAS imagery collected under variable irradiance and result in sensor radiance changes unrelated to the biophysical dynamics at the surface. To exploit the potential of UAS for vegetation mapping, this study proposes methods to obtain robust and repeatable reflectance time series under variable and low irradiance conditions. To improve sensor sensitivity to low irradiance, a radiometric pixel-wise calibration was conducted with a six-channel multispectral camera (mini-MCA6, Tetracam) using an integrating sphere simulating the varying low illumination typical of outdoor conditions at 55oN latitude. The sensor sensitivity was increased by using individual settings for independent channels, obtaining higher signal-to-noise ratios compared to the uniform setting for all image channels. To remove cloud shadows, a multivariate statistical procedure, Tucker tensor decomposition, was applied to reconstruct images using a four-way factorization scheme that takes advantage of spatial, spectral and temporal information simultaneously. The comparison between reconstructed (with Tucker) and original images showed an improvement in cloud shadow removal. Outdoor vicarious reflectance validation showed that with these methods, the multispectral imagery can provide reliable reflectance at sunny conditions with root mean square deviations of around 3%. The proposed methods could be useful for operational multispectral mapping with UAS under low and variable irradiance weather conditions as those prevalent in northern latitudes. Numéro de notice : A2019-311 Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2019.06.017 date de publication en ligne : 04/07/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.06.017 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93336
in ISPRS Journal of photogrammetry and remote sensing > vol 155 (September 2019) . - pp 58 - 71[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019091 SL Revue Centre de documentation Revues en salle Disponible 081-2019093 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Individual tree crown segmentation in tropical peat swamp forest using airborne hyperspectral data / Sitinor Atikah Nordin in Geocarto international, vol 34 n° 11 ([15/08/2019])
![]()
[article]
Titre : Individual tree crown segmentation in tropical peat swamp forest using airborne hyperspectral data Type de document : Article/Communication Auteurs : Sitinor Atikah Nordin, Auteur ; Zulkiflee Abd Latif, Auteur ; Hamdan Omar, Auteur Année de publication : 2019 Article en page(s) : pp 1218 - 1236 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse en composantes principales
[Termes descripteurs IGN] analyse multibande
[Termes descripteurs IGN] Asie du sud-est
[Termes descripteurs IGN] bande rouge
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] capteur hyperspectral
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] forêt tropicale
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] niveau de gris (image)
[Termes descripteurs IGN] réflectance végétale
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] teneur en chlorophylle des feuilles
[Termes descripteurs IGN] tourbièreRésumé : (Auteur) Individual tree crown segmentation is important step for deriving various information for fine-scale analysis of ecological process. However, only several studies have applied tree crown segmentation in tropical forest ecosystems, especially in mixed peat swamp forests. In this study, hyperspectral data were used to detect changes in the biochemical and biophysical characteristics, which are important factors for tree crown segmentation. Principal Component Analysis method was performed to investigate its influence on crown segmentation. Visually Selected PCs, 160 PCs and 160 Spectral Bands image were used and two segmentation techniques; Watershed Transformation and Region Growing segmentation were applied on those images. The highest accuracy was achieved for the crown segmentation is using Region Growing segmentation, based on 1:1 measurement, D value and RMSE value. The results obtained from 160 PCs image using region growing algorithm shows better accuracy with D value of 0.2 (80% accuracy, 20% error) and RMSE of 9.9 m2. Numéro de notice : A2019-463 Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1475511 date de publication en ligne : 24/05/2018 En ligne : https://doi.org/10.1080/10106049.2018.1475511 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93605
in Geocarto international > vol 34 n° 11 [15/08/2019] . - pp 1218 - 1236[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2019061 SL Revue Centre de documentation Revues en salle Disponible Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model / Roshanak Darvishzadeh in International journal of applied Earth observation and geoinformation, vol 79 (July 2019)
![]()
[article]
Titre : Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model Type de document : Article/Communication Auteurs : Roshanak Darvishzadeh, Auteur ; Andrew K. Skidmore, Auteur ; Haidi Abdullah, Auteur ; Elias Cherenet, Auteur Année de publication : 2019 Article en page(s) : pp 58-70 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse multibande
[Termes descripteurs IGN] bande rouge
[Termes descripteurs IGN] bande spectrale
[Termes descripteurs IGN] Bavière (Allemagne)
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] image RapidEye
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] modèle d'inversion
[Termes descripteurs IGN] Picea abies
[Termes descripteurs IGN] réflectance végétale
[Termes descripteurs IGN] spectrophotométrie
[Termes descripteurs IGN] teneur en chlorophylle des feuillesRésumé : (auteur) Leaf chlorophyll plays an essential role in controlling photosynthesis, physiological activities and forest health. In this study, the performance of Sentinel-2 and RapidEye satellite data and the Invertible Forest Reflectance Model (INFORM) radiative transfer model (RTM) for retrieving and mapping of leaf chlorophyll content in the Norway spruce (Picea abies) stands of a temperate forest was evaluated. Biochemical properties of leaf samples as well as stand structural characteristics were collected in two subsequent field campaigns during July 2015 and 2016 in the Bavarian Forest National Park (BFNP), Germany, parallel with the timing of the RapidEye and Sentinel-2 images. Leaf chlorophyll was measured both destructively and nondestructively using wet chemical spectrophotometry analysis and a hand-held chlorophyll content meter. The INFORM was utilised in the forward mode to generate two lookup tables (LUTs) in the spectral band settings of RapidEye and Sentinel-2 data using information obtained from the field campaigns. Before generating the LUTs, the sensitivity of the model input parameters to the spectral data from RapidEye and Sentinel-2 were examined. The canopy reflectance of the studied plots were obtained from the satellite images and used as input for the inversion of LUTs. The coefficient of determination (R2), root mean square errors (RMSE), and the normalised root mean square errors (NRMSE), between the retrieved and measured leaf chlorophyll, were then used to examine the attained results from RapidEye and Sentinel-2 data, respectively. The use of multiple solutions and spectral subsets for the inversion process were further investigated to enhance the retrieval accuracy of foliar chlorophyll. The result of the sensitivity analysis demonstrated that the simulated canopy reflectance of Sentinel-2 is sensitive to the alternation of all INFORM input parameters, while the simulated canopy reflectance from RapidEye did not show sensitivity to leaf water content variations. In general, there was agreement between the simulated and measured reflectance spectra from RapidEye and Sentinel-2, particularly in the visible and red-edge regions. However, examining the average absolute error from the simulated and measured reflectance revealed a large discrepancy in spectral bands around the near-infrared shoulder. The relationship between retrieved and measured leaf chlorophyll content from the Sentinel-2 data had a higher coefficient of determination with a higher NRMSE (NRMSE = 0.36 μg/cm2, R2 = 0.45) compared to those obtained using the RapidEye data (NRMSE = 0.31 μg/cm2 and R2 = 0.39). Using the mean of the ten best solutions (retrieved chlorophyll) the retrieval error for both Sentinel-2 and RapidEye data decreased (NRMSE = 0.34, NRMSE = 0.26, respectively), as compared to only selecting the single best solution. When the Sentinel-2 red edge bands were used as the spectral subset, the retrieval error of leaf chlorophyll decreased indicating the importance of red edge, as well as properly located spectral bands, for leaf chlorophyll estimation. The chlorophyll maps produced by the inversion of the two LUTs effectively represented the variation of foliar chlorophyll in BFNP and confirmed our earlier findings on the observed stress pattern caused by insect infestation. Our findings emphasise the importance of multispectral satellites which benefits from red edge spectral bands such as Sentinel-2 as well as RapidEye for regional mapping of vegetation foliar properties, particularly, chlorophyll using RTMs such as INFORM. Numéro de notice : A2019-460 Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2019.03.003 date de publication en ligne : 08/03/2019 En ligne : https://doi.org/10.1016/j.jag.2019.03.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93577
in International journal of applied Earth observation and geoinformation > vol 79 (July 2019) . - pp 58-70[article]Evaluating metrics derived from Landsat 8 OLI imagery to map crop cover / Rei Sonobe in Geocarto international, vol 34 n° 8 ([15/06/2019])
![]()
[article]
Titre : Evaluating metrics derived from Landsat 8 OLI imagery to map crop cover Type de document : Article/Communication Auteurs : Rei Sonobe, Auteur ; Yuki Yamaya, Auteur ; Hiroshi Tani, Auteur ; Xiufeng Wang, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 839 - 855 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] classification et arbre de régression
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] rayonnement lumineux
[Termes descripteurs IGN] rayonnement proche infrarouge
[Termes descripteurs IGN] réflectance végétale
[Termes descripteurs IGN] signature spectrale
[Termes descripteurs IGN] surface cultivéeRésumé : (auteur) Developing techniques are required to generate agricultural land cover maps to monitor agricultural fields. Landsat 8 Operational Land Imager (OLI) offers reflectance data over the visible to shortwave-infrared range. OLI offers several advantages, such as adequate spatial and spectral resolution, and 16 day repeat coverage, furthermore, spectral indices derived from Landsat 8 OLI possess great potential for evaluating the status of vegetation. Additionally, classification algorithms are essential for generating accurate maps. Recently, multi-Grained Cascade Forest, which is also called deep forest, was proposed, and it was shown to give highly competitive performance for classification. However, the ability of this algorithm to generate crop maps with satellite data had not yet been evaluated. In this study, the reflectance at 7 bands and 57 spectral indices calculated from Landsat 8 OLI data were evaluated for its potential for crop type identification. Numéro de notice : A2019-514 Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1425739 date de publication en ligne : 19/01/2018 En ligne : https://doi.org/10.1080/10106049.2018.1425739 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93823
in Geocarto international > vol 34 n° 8 [15/06/2019] . - pp 839 - 855[article]ICARE-VEG: A 3D physics-based atmospheric correction method for tree shadows in urban areas / Karine R.M. Adeline in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
![]()
[article]
Titre : ICARE-VEG: A 3D physics-based atmospheric correction method for tree shadows in urban areas Type de document : Article/Communication Auteurs : Karine R.M. Adeline, Auteur ; Xavier Briottet , Auteur ; X. Ceamanos, Auteur ; T. Dartigalongue, Auteur ; Jean-Philippe Gastellu-Etchegorry, Auteur
Année de publication : 2018 Article en page(s) : pp 311 - 327 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] arbre (flore)
[Termes descripteurs IGN] correction atmosphérique
[Termes descripteurs IGN] détection d'ombre
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] Leaf Area Index
[Termes descripteurs IGN] logiciel de traitement d'image
[Termes descripteurs IGN] modèle de transfert radiatif
[Termes descripteurs IGN] modélisation 3D
[Termes descripteurs IGN] réflectance végétale
[Termes descripteurs IGN] zone urbaineRésumé : (Auteur) Many applications dedicated to urban areas (e.g. land cover mapping and biophysical properties estimation) using high spatial resolution remote sensing images require the use of 3D atmospheric correction methods, able to model complex light interactions within urban topography such as buildings and trees. Currently, one major drawback of these methods is their lack in modeling the radiative signature of trees (e.g. the light transmitted through the tree crown), which leads to an over-estimation of ground reflectance at tree shadows. No study has been carried out to take into account both optical and structural properties of trees in the correction provided by these methods. The aim of this work is to improve an existing 3D atmospheric correction method, ICARE (Inversion Code for urban Areas Reflectance Extraction), to account for trees in its new version, ICARE-VEG (ICARE with VEGetation). After the execution of ICARE, the methodology of ICARE-VEG consists in tree crown delineation and tree shadow detection, and then the application of a physics-based correction factor in order to perform a tree-specific local correction for each pixel in tree shadow. A sensitivity analysis with a design of experiments performed with a 3D canopy radiative transfer code, DART (Discrete Anisotropic Radiative Transfer), results in fixing the two most critical variables contributing to the impact of an isolated tree crown on the radiative energy budget at tree shadow: the solar zenith angle and the tree leaf area index (LAI). Thus, the approach to determine the correction factor relies on an empirical statistical regression and the addition of a geometric scaling factor to account for the tree crown occultation from ground. ICARE-VEG and ICARE performance were compared and validated in the Visible-Near Infrared Region (V-NIR: 0.4–1.0 µm) with hyperspectral airborne data at 0.8 m resolution on three ground materials types, grass, asphalt and water. Results show that (i) ICARE-VEG improves the mean absolute error in retrieved reflectances compared to ICARE in tree shadows by a multiplicative factor ranging between 4.2 and 18.8, and (ii) reduces the spectral bias in reflectance from visible to NIR (due to light transmission through the tree crown) by a multiplicative factor between 1.0 and 1.4 in terms of spectral angle mapper performance. ICARE-VEG opens the way to a complete interpretation of remote sensing images (sunlit, shade cast by both buildings and trees) and the derivation of scientific value-added products over all the entire image without the preliminary step of shadow masking. Numéro de notice : A2018-296 Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.05.015 date de publication en ligne : 01/08/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.05.015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90415
in ISPRS Journal of photogrammetry and remote sensing > vol 142 (August 2018) . - pp 311 - 327[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018081 RAB Revue Centre de documentation En réserve 3L Disponible 081-2018083 DEP-EXM Revue MATIS Dépôt en unité Exclu du prêt 081-2018082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Multi-scale assessment of invasive plant species diversity using Pléiades 1A, RapidEye and Landsat-8 data / Siddhartha Khare in Geocarto international, vol 33 n° 7 (July 2018)
PermalinkClose-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform / Mohd Shahrimie Mohd Asaari in ISPRS Journal of photogrammetry and remote sensing, vol 138 (April 2018)
PermalinkRemote estimation of canopy leaf area index and chlorophyll content in Moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) forest using MODIS reflectance data / Xiaojun Xu in Annals of Forest Science [en ligne], vol 75 n° 1 (March 2018)
PermalinkEstimation of forest aboveground biomass from HJ1B imagery using a canopy reflectance model and a forest growth model / Xinyun Wang in Geocarto international, vol 33 n° 2 (February 2018)
PermalinkModeling canopy reflectance over sloping terrain based on path length correction / Gaofei Yin in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
PermalinkAngular reflectance of leaves with a dual-wavelength terrestrial lidar and its implications for leaf-bark separation and leaf moisture estimation / Steven Hancock in IEEE Transactions on geoscience and remote sensing, vol 55 n° 6 (June 2017)
PermalinkChange detection in forests and savannas using statistical analysis based on geographical objects / Lucilia Rezende Leite in Boletim de Ciências Geodésicas, vol 23 n° 2 (abr - jun 2017)
PermalinkTotal canopy transmittance estimated from small-footprint, full-waveform airborne LiDAR / Milutin Milenković in ISPRS Journal of photogrammetry and remote sensing, vol 128 (June 2017)
PermalinkUrban land use/land cover discrimination using image-based reflectance calibration methods for hyperspectral data / Shailesh S. Deshpande in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 5 (May 2017)
PermalinkSpectranomics: Emerging science and conservation opportunities at the interface of biodiversity and remote sensing / Gregory P. Asner in Global ecology and conservation, vol 8 (October 2016)
Permalink