Descripteur
Termes IGN > sciences naturelles > physique > optique > optique physique > radiométrie > signature spectrale > réflectance > réflectance végétale
réflectance végétaleVoir aussi |
Documents disponibles dans cette catégorie (203)



Etendre la recherche sur niveau(x) vers le bas
A simple approach to enhance the TROPOMI solar-induced chlorophyll fluorescence product by combining with canopy reflected radiation at near-infrared band / Xinjie Liu in Remote sensing of environment, vol 284 (January 2023)
![]()
[article]
Titre : A simple approach to enhance the TROPOMI solar-induced chlorophyll fluorescence product by combining with canopy reflected radiation at near-infrared band Type de document : Article/Communication Auteurs : Xinjie Liu, Auteur ; Liangyun Liu, Auteur ; Cédric Bacour, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 113341 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] canopée
[Termes IGN] chlorophylle
[Termes IGN] fluorescence
[Termes IGN] image Sentinel-5P-TROPOMI
[Termes IGN] image Terra-MODIS
[Termes IGN] production primaire brute
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réflectance de surface
[Termes IGN] réflectance végétaleRésumé : (auteur) Satellite-based data of solar-induced chlorophyll fluorescence (SIF) and the near-infrared radiation reflected by vegetation (NIRvP) are being increasingly used for the estimation of vegetation gross primary product (GPP) at the global scale. Although SIF contains more physiological information than NIRvP, NIRvP can have higher data quality and spatio-temporal resolution. Therefore, the two variables can be considered complementary for GPP monitoring. Here, we propose a simple framework to combine SIF and NIRvP data from different data sources to generate an enhanced SIF product (eSIF). The original SIF data comes from the TROPOMI instrument onboard the Sentinel-5P mission, whereas NIRvP data are derived from MODIS spectral reflectance and ERA5 reanalysis data. The resulting eSIF product has a spatial resolution of 0.05° and a temporal resolution of 8 days, as well as a higher signal-to-noise ratio and a lower angular dependency than the original TROPOMI SIF data. Our results demonstrate that eSIF has similar spatial patterns to the original SIF but is more spatially continuous and less noisy. Comparisons with the FLUXCOM global GPP product show that eSIF has a more universal relationship with GPP than NIRvP for different grass/crop plant functional types (the coefficients of variation are 18.9% for slopes of GPP to eSIF and 27.3% for slopes of GPP to NIRvP), but NIRvP outperforms eSIF for tracking GPP for forest PFTs exclude BoENF. Moreover, eSIF is able to better track the seasonal variations in GPP related to environmental stresses. This study highlights that our methodology based on the combination of SIF and NIRvP is a promising approach for better monitoring of GPP. Numéro de notice : A2023-017 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113341 Date de publication en ligne : 07/11/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113341 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102151
in Remote sensing of environment > vol 284 (January 2023) . - n° 113341[article]An advanced bidirectional reflectance factor (BRF) spectral approach for estimating flavonoid content in leaves of Ginkgo plantations / Kai Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 193 (November 2022)
![]()
[article]
Titre : An advanced bidirectional reflectance factor (BRF) spectral approach for estimating flavonoid content in leaves of Ginkgo plantations Type de document : Article/Communication Auteurs : Kai Zhou, Auteur ; Lin Cao, Auteur ; Shiyun Yin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1 - 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bande spectrale
[Termes IGN] coefficient de corrélation
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] feuille (végétation)
[Termes IGN] Ginkgo biloba
[Termes IGN] image à haute résolution
[Termes IGN] indice foliaire
[Termes IGN] Kiangsou (Chine)
[Termes IGN] réflectance végétaleRésumé : (auteur) As a key phenolic pigment concentrated in the surface tissues of leaves, flavonoids (Flav) are the major bioactive ingredients in Ginkgo leaf extracts. Flav are also marked natural antioxidants and significant indicators of biotic and abiotic stresses, critical for determining cultivation quality and enhancing Flav yield. In particular, area-based Flav (Flavarea) is related to the shortwave-blue light interaction within leaves per unit leaf area, whereas mass-based Flav (Flavmass) is useful for the quantitative assessment of Flav yield. In order to accurately estimate the contents of Flavarea and Flavmass in leaves of Ginkgo plantations, in this study, we developed an advanced bidirectional reflectance factor (BRF) spectra-based approach by reducing the effects of specular reflection and enhancing the absorption signals of Flav (in the shortwave-blue region of spectrum), using a suite of new spectral indices (SIs) (i.e., flavonoid index (FI), modified flavonoid index (mFI) and double difference index (DD)) calculated from the leaf clip equipped spectrometers-collected data. The results demonstrated that most of the SIs derived from the developed BRF spectra-based approach obtained relatively high performance for Flav estimation by alleviating adverse effects of specular reflection to different extents (CV-R2 = 0.60–0.76). In specific, DDnir434,421 selected from DD-type indices performed (CV-R2 = 0.76 for Flavarea; CV-R2 = 0.69 for Flavmass) better than other indices. These findings represent marked potentials of the developed BRF spectra-based approach for non-destructively estimating leaf Flav content, as well as improving the understanding of the mechanisms of specular effects on Flav estimations in leaves of Ginkgo plantations. Numéro de notice : A2022-744 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.08.020 Date de publication en ligne : 09/09/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.08.020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101727
in ISPRS Journal of photogrammetry and remote sensing > vol 193 (November 2022) . - pp 1 - 16[article]Uncertainties in measurements of leaf optical properties are small compared to the biological variation within and between individuals of European beech / Fanny Petibon in Remote sensing of environment, vol 264 (October 2021)
![]()
[article]
Titre : Uncertainties in measurements of leaf optical properties are small compared to the biological variation within and between individuals of European beech Type de document : Article/Communication Auteurs : Fanny Petibon, Auteur ; Ewa A. Czyż, Auteur ; Giulia Ghielmetti, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 112601 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] anisotropie
[Termes IGN] diagnostic foliaire
[Termes IGN] échantillonnage
[Termes IGN] Fagus sylvatica
[Termes IGN] feuille (végétation)
[Termes IGN] France (administrative)
[Termes IGN] incertitude spectrale
[Termes IGN] indicateur biologique
[Termes IGN] phénologie
[Termes IGN] réflectance spectrale
[Termes IGN] réflectance végétale
[Termes IGN] saison
[Termes IGN] spectroradiomètre
[Termes IGN] SuisseRésumé : (auteur) The measurement of leaf optical properties (LOP) using reflectance and scattering properties of light allows a continuous, time-resolved, and rapid characterization of many species traits including water status, chemical composition, and leaf structure. Variation in trait values expressed by individuals result from a combination of biological and environmental variations. Such species trait variations are increasingly recognized as drivers and responses of biodiversity and ecosystem properties. However, little has been done to comprehensively characterize or monitor such variation using leaf reflectance, where emphasis is more often on species average values. Furthermore, although a variety of platforms and protocols exist for the estimation of leaf reflectance, there is neither a standard method, nor a best practise of treating measurement uncertainty which has yet been collectively adopted. In this study, we investigate what level of uncertainty can be accepted when measuring leaf reflectance while ensuring the detection of species trait variation at several levels: within individuals, over time, between individuals, and between populations. As a study species, we use an economically and ecologically important dominant European tree species, namely Fagus sylvatica. We first use fabrics as standard material to quantify measurement uncertainties associated with leaf clip (0.0001 to 0.4 reflectance units) and integrating sphere measurements (0.0001 to 0.01 reflectance units) via error propagation. We then quantify spectrally resolved variation in reflectance from F. sylvatica leaves. We show that the measurement uncertainty associated with leaf reflectance, estimated using a field spectroradiometer with attached leaf clip, represents on average a small portion of the spectral variation within a single individual sampled over one growing season (2.7 ± 1.7%), or between individuals sampled over one week (1.5 ± 1.3% or 3.4 ± 1.7%, respectively) in a set of monitored F. sylvatica trees located in Swiss and French forests. In all forests, the spectral variation between individuals exceeded the spectral variation of a single individual at the time of the measurement. However, measurements of variation within individuals at different canopy positions over time indicate that sampling design (e.g., standardized sampling, and sample size) strongly impacts our ability to measure between-individual variation. We suggest best practice approaches toward a standardized protocol to allow for rigorous quantification of species trait variation using leaf reflectance. Numéro de notice : A2021-808 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112601 Date de publication en ligne : 29/07/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112601 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98868
in Remote sensing of environment > vol 264 (October 2021) . - n° 112601[article]Evaluating the performance of hyperspectral leaf reflectance to detect water stress and estimation of photosynthetic capacities / Jingjing Zhou in Remote sensing, vol 13 n° 11 (June-1 2021)
![]()
[article]
Titre : Evaluating the performance of hyperspectral leaf reflectance to detect water stress and estimation of photosynthetic capacities Type de document : Article/Communication Auteurs : Jingjing Zhou, Auteur ; Ya-Hao Zhang, Auteur ; Ze-Min Han, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 2160 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] Chine
[Termes IGN] Citrus (genre)
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] feuille (végétation)
[Termes IGN] image hyperspectrale
[Termes IGN] photosynthèse
[Termes IGN] réflectance végétale
[Termes IGN] rendement agricole
[Termes IGN] stress hydrique
[Termes IGN] surveillance de la végétationRésumé : (auteur) Advanced techniques capable of early, rapid, and nondestructive detection of the impacts of drought on fruit tree and the measurement of the underlying photosynthetic traits on a large scale are necessary to meet the challenges of precision farming and full prediction of yield increases. We tested the application of hyperspectral reflectance as a high-throughput phenotyping approach for early identification of water stress and rapid assessment of leaf photosynthetic traits in citrus trees by conducting a greenhouse experiment. To this end, photosynthetic CO2 assimilation rate (Pn), stomatal conductance (Cond) and transpiration rate (Trmmol) were measured with gas-exchange approaches alongside measurements of leaf hyperspectral reflectance from citrus grown across a gradient of soil drought levels six times, during 20 days of stress induction and 13 days of rewatering. Water stress caused Pn, Cond, and Trmmol rapid and continuous decline throughout the entire drought period. The upper layer was more sensitive to drought than middle and lower layers. Water stress could also bring continuous and dynamic changes of the mean spectral reflectance and absorptance over time. After trees were rewatered, these differences were not obvious. The original reflectance spectra of the four water stresses were surprisingly of low diversity and could not track drought responses, whereas specific hyperspectral spectral vegetation indices (SVIs) and absorption features or wavelength position variables presented great potential. The following machine-learning algorithms: random forest (RF), support vector machine (SVM), gradient boost (GDboost), and adaptive boosting (Adaboost) were used to develop a measure of photosynthesis from leaf reflectance spectra. The performance of four machine-learning algorithms were assessed, and RF algorithm yielded the highest predictive power for predicting photosynthetic parameters (R2 was 0.92, 0.89, and 0.88 for Pn, Cond, and Trmmol, respectively). Our results indicated that leaf hyperspectral reflectance is a reliable and stable method for monitoring water stress and yield increase, with great potential to be applied in large-scale orchards. Numéro de notice : A2021-440 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13112160 Date de publication en ligne : 31/05/2021 En ligne : https://doi.org/10.3390/rs13112160 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97826
in Remote sensing > vol 13 n° 11 (June-1 2021) . - n° 2160[article]Fractional vegetation cover estimation algorithm for FY-3B reflectance data based on random forest regression method / Duanyang Liu in Remote sensing, vol 13 n° 11 (June-1 2021)
![]()
[article]
Titre : Fractional vegetation cover estimation algorithm for FY-3B reflectance data based on random forest regression method Type de document : Article/Communication Auteurs : Duanyang Liu, Auteur ; Kun Jia, Auteur ; Haiying jiang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 2165 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] couvert végétal
[Termes IGN] image Feng-Yun
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] réflectance végétale
[Termes IGN] régressionRésumé : (auteur) As an important land surface vegetation parameter, fractional vegetation cover (FVC) has been widely used in many Earth system ecological and climate models. In particular, high-quality and reliable FVC products on the global scale are important for the Earth surface process simulation and global change studies. Recently, the FengYun-3 (FY-3) series satellites, which are the second generation of Chinese meteorological satellites, launched with the polar orbit and provide continuous land surface observations on a global scale. However, there is rare studying on the FVC estimation using FY-3 reflectance data. Therefore, the FY-3B reflectance data were selected as the representative data to develop a FVC estimation algorithm in this study, which would investigate the capability of the FY-3 reflectance data on the global FVC estimation. The spatial–temporal validation over the regional area indicated that the FVC estimations generated by the proposed algorithm had reliable continuities. Furthermore, a satisfactory accuracy performance (R2 = 0.7336, RMSE = 0.1288) was achieved for the proposed algorithm based on the Earth Observation LABoratory (EOLAB) reference FVC data, which provided further evidence on the reliability and robustness of the proposed algorithm. All these results indicated that the FY-3 reflectance data were capable of generating a FVC estimation with reliable spatial–temporal continuities and accuracy. Numéro de notice : A2021-439 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13112165 Date de publication en ligne : 31/05/2021 En ligne : https://doi.org/10.3390/rs13112165 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97824
in Remote sensing > vol 13 n° 11 (June-1 2021) . - n° 2165[article]Apport de la modélisation physique pour la cartographie de la biodiversité végétale en forêts tropicales par télédétection optique / Dav Ebengo Mwampongo (2021)
PermalinkPolarization of light reflected by grass: modeling using visible-sunlit areas / Bin Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 12 (December 2020)
PermalinkUnmanned aerial system multispectral mapping for low and variable solar irradiance conditions: Potential of tensor decomposition / Sheng Wang in ISPRS Journal of photogrammetry and remote sensing, vol 155 (September 2019)
PermalinkIndividual tree crown segmentation in tropical peat swamp forest using airborne hyperspectral data / Sitinor Atikah Nordin in Geocarto international, vol 34 n° 11 ([15/08/2019])
PermalinkMapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model / Roshanak Darvishzadeh in International journal of applied Earth observation and geoinformation, vol 79 (July 2019)
PermalinkEvaluating metrics derived from Landsat 8 OLI imagery to map crop cover / Rei Sonobe in Geocarto international, vol 34 n° 8 ([15/06/2019])
PermalinkICARE-VEG: A 3D physics-based atmospheric correction method for tree shadows in urban areas / Karine R.M. Adeline in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
PermalinkMulti-scale assessment of invasive plant species diversity using Pléiades 1A, RapidEye and Landsat-8 data / Siddhartha Khare in Geocarto international, vol 33 n° 7 (July 2018)
PermalinkClose-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform / Mohd Shahrimie Mohd Asaari in ISPRS Journal of photogrammetry and remote sensing, vol 138 (April 2018)
PermalinkRemote estimation of canopy leaf area index and chlorophyll content in Moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) forest using MODIS reflectance data / Xiaojun Xu in Annals of Forest Science, vol 75 n° 1 (March 2018)
Permalink