Descripteur
Documents disponibles dans cette catégorie (2565)


Etendre la recherche sur niveau(x) vers le bas
Detection and characterization of slow-moving landslides in the 2017 Jiuzhaigou earthquake area by combining satellite SAR observations and airborne Lidar DSM / Jiehua Cai in Engineering Geology, vol 305 (August 2022)
![]()
[article]
Titre : Detection and characterization of slow-moving landslides in the 2017 Jiuzhaigou earthquake area by combining satellite SAR observations and airborne Lidar DSM Type de document : Article/Communication Auteurs : Jiehua Cai, Auteur ; Lu Zhang, Auteur ; Jie Dong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 106730 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie des risques
[Termes IGN] déformation de surface
[Termes IGN] données lidar
[Termes IGN] données multisources
[Termes IGN] effondrement de terrain
[Termes IGN] géomorphologie
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image optique
[Termes IGN] image Sentinel-SAR
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] MNS lidar
[Termes IGN] MNS SRTM
[Termes IGN] séisme
[Termes IGN] Setchouan (Chine)
[Termes IGN] surveillance géologiqueRésumé : (auteur) On 8th August 2017, a catastrophic Ms. 7.0 earthquake with a focal depth of 20 km struck the Jiuzhaigou County in Sichuan Province, China. It exerted a strong influence on the slope stability within the surrounding areas and triggered numerous secondary geohazards including rockfalls and other co-seismic landslides, which incurred drastic surface changes, and thus can be easily identified from cloud-free high-resolution optical imagery. Most of such landslides became stabilized shortly after the earthquake while others moving very slowly for years. In contrast, some slopes were destabilized without significant surface change into slow-moving landslides, which may pose long-term potential threats to people's life and property. Therefore, it is crucial to accurately identify these slow-moving landslides and regularly monitor their post-seismic activity. In this study, we employed the synthetic aperture radar interferometry (InSAR) techniques to detect and monitor slow-moving landslides after the earthquake in the Jiuzhaigou area, and analyzed the impacts of the earthquake on these landslides through integration of multi-source data (InSAR, Lidar, optical image, and field survey). As a result, 16 slow-moving landslides were detected by InSAR in the Jiuzhaigou area, including several historical landslides. The results of time-series InSAR analyses enabled identification of three kinds of landslide evolution modes affected by the earthquake, i.e. acceleration of deformation of pre-existing landslides, reactivation of dormant landslide, and remobilization of earthquake-triggered landslide. Each mode is supported by detailed analyses of multi-source data. The results demonstrated that satellite InSAR combined with high-resolution Lidar and optical data can provide a cost-effective approach of post-earthquake geohazards detection and monitoring. Numéro de notice : A2022-469 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.enggeo.2022.106730 Date de publication en ligne : 28/05/2022 En ligne : https://doi.org/10.1016/j.enggeo.2022.106730 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100811
in Engineering Geology > vol 305 (August 2022) . - n° 106730[article]Mapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data / Santanu Malik in Geocarto international, vol 37 n° 8 ([22/06/2022])
![]()
[article]
Titre : Mapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data Type de document : Article/Communication Auteurs : Santanu Malik, Auteur ; Tridip Bhowmik, Auteur ; Umesh Mishra, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2198 - 2214 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] carte d'occupation du sol
[Termes IGN] estimation bayesienne
[Termes IGN] géostatistique
[Termes IGN] gestion durable
[Termes IGN] Inde
[Termes IGN] krigeage
[Termes IGN] modèle de simulation
[Termes IGN] puits de carbone
[Termes IGN] régression
[Termes IGN] réseau neuronal artificiel
[Termes IGN] solRésumé : (auteur) Prediction and accurate digital soil mapping (DSM) of soil organic carbon (SOC) at a local scale is a key factor for any agro-ecological modelling. This study aims to use remote sensing and terrain derivatives to provide a reliable method for SOC prediction. An advanced geostatistical-based empirical Bayesian Kriging regression (EBKR) method was used and performance was compared with the artificial neural network (ANN) and hybrid ANN, i.e. ANN-OK (ordinary kriging) and ANN-CK (cokriging). The result showed that the hybrid ANN model performs better than ANN, whereas the EBKR method outperforms all other methods with the highest R2 of 0.936. The DSM map shows that the highest SOC concentration was found in easternmost part of the study area with grass and agricultural land. This work shows the robustness of the EBKR prediction method over other techniques. The study will also aid the policymakers in adopting sustainable land use management. Numéro de notice : A2022-505 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1815864 Date de publication en ligne : 24/09/2020 En ligne : https://doi.org/10.1080/10106049.2020.1815864 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101026
in Geocarto international > vol 37 n° 8 [22/06/2022] . - pp 2198 - 2214[article]3D modeling method for dome structure using digital geological map and DEM / Xian-Yu Liu in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)
![]()
[article]
Titre : 3D modeling method for dome structure using digital geological map and DEM Type de document : Article/Communication Auteurs : Xian-Yu Liu, Auteur ; An-Bo Li, Auteur ; Hao Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 339 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] carte géologique
[Termes IGN] carte stratigraphique
[Termes IGN] courbe de Bézier
[Termes IGN] modèle géologique
[Termes IGN] modèle numérique de surface
[Termes IGN] modélisation 3D
[Termes IGN] structure géologiqueRésumé : (auteur) Geological maps have wide coverage with low acquisition difficulty. When other geological survey data are scarce, they are a valuable source of geological structure information for geological modeling. However, for structures with large deformation, geological map information has difficulty meeting the requirement of its 3D geological modeling. Therefore, this paper takes the dome structure as an example to explore a 3D modeling method based on geological maps, DEM and related geological knowledge. The method includes: (1) adaptively calculating the attitude of points on the stratigraphic boundaries; (2) inferring and generating the bottom boundary of the model from the attitude data of the boundary points; (3) generating the model interface constrained by Bézier curves based on the bottom boundary; (4) generating the top and bottom surfaces of the stratum; and (5) stitching each surface of the geological body to generate the final dome model. Case studies of the dome in Wulongshan in China and the Richat structure in Mauritania show that this method can build a solid model of the dome based only on geological maps and DEM data, whose morphological features are basically consistent with those embodied in the section view or the model generated by traditional methods. Numéro de notice : A2022-482 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/ijgi11060339 Date de publication en ligne : 07/06/2022 En ligne : https://doi.org/10.3390/ijgi11060339 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100895
in ISPRS International journal of geo-information > vol 11 n° 6 (June 2022) . - n° 339[article]On the consistency of coastal sea-level measurements in the Mediterranean Sea from tide gauges and satellite radar altimetry / Sara Bruni in Journal of geodesy, vol 96 n° 6 (June 2022)
![]()
[article]
Titre : On the consistency of coastal sea-level measurements in the Mediterranean Sea from tide gauges and satellite radar altimetry Type de document : Article/Communication Auteurs : Sara Bruni, Auteur ; Luciana Fenoglio, Auteur ; Fabio Raicich, Auteur ; Susanna Zerbini, Auteur Année de publication : 2022 Article en page(s) : n° 41 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] analyse comparative
[Termes IGN] cohérence des données
[Termes IGN] déformation verticale de la croute terrestre
[Termes IGN] données altimétriques
[Termes IGN] données marégraphiques
[Termes IGN] Méditerranée, mer
[Termes IGN] niveau de la merRésumé : (auteur) We assess the consistency of sea-level variability derived from tide-gauge (TG) and satellite radar altimeter (ALT) data acquired along the coasts of the Mediterranean Sea. For a coherent comparison between these techniques, we use GNSS observations to characterize the local vertical land movement embedded in TG records, but not affecting ALT data. We first investigate the performance of CMEMS, a gridded altimeter product covering the period 1993–2019. TG and GNSS series are not required to cover the whole altimeter period. The inter-technique comparison reveals good agreement at annual and semi-annual scales, but also the occasional occurrence of nonlinear discrepancies impacting trend estimation. Large-scale patterns of variability are observed in the Ionian region and along the continental shores from the Alboran to the Adriatic Sea. The estimates of linear trends based on TG + GNSS or CMEMS observations are found consistent within 1σ at 27/45 sites, with the best agreement in the Western Mediterranean and Adriatic Seas. We also consider the X-TRACK/ALES altimeter dataset, provided along the tracks of the Jason missions (2002–2018) and optimized for coastal applications. In this case, we identify only 12 sites suitable for the comparison. The results show that inter-technique consistency is impacted by the length of the series used in the comparison. Optimum agreement between X-TRACK/ALES and TG + GNSS trends is reached at the two sites closer to a satellite track. However, we find sites where X-TRACK/ALES-derived sea-level trends present suspicious along-track variations at Numéro de notice : A2022-452 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s00190-022-01626-9 En ligne : http://dx.doi.org/10.1007/s00190-022-01626-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100976
in Journal of geodesy > vol 96 n° 6 (June 2022) . - n° 41[article]Cliff change detection using siamese KPCONV deep network on 3D point clouds / Iris de Gelis in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
![]()
[article]
Titre : Cliff change detection using siamese KPCONV deep network on 3D point clouds Type de document : Article/Communication Auteurs : Iris de Gelis, Auteur ; Zoé Bessin, Auteur ; Pauline Letortu, Auteur ; Marion Jaud, Auteur ; C. Delacourt, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 649 - 656 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] érosion côtière
[Termes IGN] falaise
[Termes IGN] semis de points
[Termes IGN] surveillance géologiqueMots-clés libres : KPConv = Kernel Point Convolution Résumé : (auteur) Mainly depending on their lithology, coastal cliffs are prone to changes due to erosion. This erosion could increase due to climate change leading to potential threats for coastal users, assets, or infrastructure. Thus, it is important to be able to understand and characterize cliff face changes at fine scale. Usually, monitoring is conducted thanks to distance computation and manual analysis of each cliff face over 3D point clouds to be able to study 3D dynamics of cliffs. This is time consuming and inclined to each one judgment in particular when dealing with 3D point clouds data. Indeed, 3D point clouds characteristics (sparsity, impossibility of working on a classical top view representation, volume of data, …) make their processing harder than 2D images. Last decades, an increase of performance of machine learning methods for earth observation purposes has been performed. To the best of our knowledge, deep learning has never been used for 3D change detection and categorization in coastal cliffs. Lately, Siamese KPConv brings successful results for change detection and categorization into 3D point clouds in urban area. Although the case study is different by its more random characteristics and its complex geometry, we demonstrate here that this method also allows to extract and categorize changes on coastal cliff face. Results over the study area of Petit Ailly cliffs in Varengeville-sur-Mer (France) are very promising qualitatively as well as quantitatively: erosion is retrieved with an intersection over union score of 83.86 %. Numéro de notice : A2022-444 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-3-2022-649-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-3-2022-649-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100779
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-3-2022 (2022 edition) . - pp 649 - 656[article]Efficient dike monitoring using terrestrial SFM photogrammetry / Laurent Froideval in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
PermalinkLandslide susceptibility assessment considering spatial agglomeration and dispersion characteristics: A case study of Bijie City in Guizhou Province, China / Kezhen Yao in ISPRS International journal of geo-information, vol 11 n° 5 (May 2022)
PermalinkDeep mass redistribution prior to the 2010 Mw 8.8 Maule (Chile) Earthquake revealed by GRACE satellite gravity / Marie Bouih in Earth and planetary science letters, vol 584 (15 April 2022)
PermalinkOptimal resolution of soil properties maps varies according to their geographical extent and location / Christian Piedallu in Geoderma, vol 412 (15 April 2022)
PermalinkAssessment of RTK quadcopter and structure-from-motion photogrammetry for fine-scale monitoring of coastal topographic complexity / Stéphane Bertin in Remote sensing, vol 14 n° 7 (April-1 2022)
PermalinkCoupling fossil records and traditional discrimination metrics to test how genetic information improves species distribution models of the European beech Fagus sylvatica / Pedro Poli in European Journal of Forest Research, vol 141 n° 2 (April 2022)
PermalinkSuspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms / Marzieh Fadaee in Geocarto international, vol 37 n° 4 (April 2022)
PermalinkVolunteered geographic information mobile application for participatory landslide inventory mapping / Raden Muhammad Anshori in Computers & geosciences, vol 161 (April 2022)
PermalinkAre northern German Scots pine plantations climate smart? The impact of large-scale conifer planting on climate, soil and the water cycle / Christoph Leuschner in Forest ecology and management, vol 507 (1 March 2022)
PermalinkFeasibility of mapping radioactive minerals in high background radiation areas using remote sensing techniques / J.O. Ondieki in International journal of applied Earth observation and geoinformation, vol 107 (March 2022)
Permalink