Descripteur
Documents disponibles dans cette catégorie (1673)


Etendre la recherche sur niveau(x) vers le bas
Constraint-based evaluation of map images generalized by deep learning / Azelle Courtial in Journal of Geovisualization and Spatial Analysis, vol 6 n° 1 (June 2022)
![]()
[article]
Titre : Constraint-based evaluation of map images generalized by deep learning Type de document : Article/Communication Auteurs : Azelle Courtial , Auteur ; Guillaume Touya
, Auteur ; Xiang Zhang, Auteur
Année de publication : 2022 Projets : 2-Pas d'info accessible - article non ouvert / Article en page(s) : n° 13 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] connexité (graphes)
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] montagne
[Termes IGN] programmation par contraintes
[Termes IGN] qualité des données
[Termes IGN] rendu réaliste
[Termes IGN] route
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Deep learning techniques have recently been experimented for map generalization. Although promising, these experiments raise new problems regarding the evaluation of the output images. Traditional map generalization evaluation cannot directly be applied to the results in a raster format. Additionally, the internal evaluation used by deep learning models is mostly based on the realism of images and the accuracy of pixels, and none of these criteria is sufficient to evaluate a generalization process. Finally, deep learning processes tend to hide the causal mechanisms and do not always guarantee a result that follows cartographic principles. In this article, we propose a method to adapt constraint-based evaluation to the images generated by deep learning models. We focus on the use case of mountain road generalization, and detail seven raster-based constraints, namely, clutter, coalescence reduction, smoothness, position preservation, road connectivity preservation, noise absence, and color realism constraints. These constraints can contribute to current studies on deep learning-based map generalization, as they can help guide the learning process, compare different models, validate these models, and identify remaining problems in the output images. They can also be used to assess the quality of training examples. Numéro de notice : A2022-332 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s41651-022-00104-2 Date de publication en ligne : 07/05/2022 En ligne : http://dx.doi.org/10.1007/s41651-022-00104-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100646
in Journal of Geovisualization and Spatial Analysis > vol 6 n° 1 (June 2022) . - n° 13[article]Assessment of RTK quadcopter and structure-from-motion photogrammetry for fine-scale monitoring of coastal topographic complexity / Stéphane Bertin in Remote sensing, vol 14 n° 7 (April-1 2022)
![]()
[article]
Titre : Assessment of RTK quadcopter and structure-from-motion photogrammetry for fine-scale monitoring of coastal topographic complexity Type de document : Article/Communication Auteurs : Stéphane Bertin, Auteur ; Pierre Stéphan, Auteur ; Jérôme Ammann, Auteur Année de publication : 2022 Article en page(s) : n° 1679 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Bretagne
[Termes IGN] centrale inertielle
[Termes IGN] données GNSS
[Termes IGN] géomorphologie locale
[Termes IGN] géoréférencement
[Termes IGN] image captée par drone
[Termes IGN] point d'appui
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] sédiment
[Termes IGN] structure-from-motion
[Termes IGN] surveillance du littoralRésumé : (auteur) Advances in image-based remote sensing using unmanned aerial vehicles (UAV) and structure-from-motion (SfM) photogrammetry continue to improve our ability to monitor complex landforms over representative spatial and temporal scales. As with other water-worked environments, coastal sediments respond to shaping processes through the formation of multi-scale topographic roughness. Although this topographic complexity can be an important marker of hydrodynamic forces and sediment transport, it is seldom characterized in typical beach surveys due to environmental and technical constraints. In this study, we explore the feasibility of using SfM photogrammetry augmented with an RTK quadcopter for monitoring the coastal topographic complexity at the beach-scale in a macrotidal environment. The method had to respond to resolution and time constraints for a realistic representation of the topo-morphological features from submeter dimensions and survey completion in two hours around low tide to fully cover the intertidal zone. Different tests were performed at two coastal field sites with varied dimensions and morphologies to assess the photogrammetric performance and eventual means for optimization. Our results show that, with precise image positioning, the addition of a single ground control point (GCP) enabled a global precision (RMSE) equivalent to that of traditional GCP-based photogrammetry using numerous and well-distributed GCPs. The optimal model quality that minimized vertical bias and random errors was achieved from 5 GCPs, with a two-fold reduction in RMSE. The image resolution for tie point detection was found to be an important control on the measurement quality, with the best results obtained using images at their original scale. Using these findings enabled designing an efficient and effective workflow for monitoring coastal topographic complexity at a large scale. Numéro de notice : A2022-287 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14071679 Date de publication en ligne : 31/03/2022 En ligne : https://doi.org/10.3390/rs14071679 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100321
in Remote sensing > vol 14 n° 7 (April-1 2022) . - n° 1679[article]Characterizing stream morphological features important for fish habitat using airborne laser scanning data / Spencer Dakin Kuiper in Remote sensing of environment, vol 272 (April 2022)
![]()
[article]
Titre : Characterizing stream morphological features important for fish habitat using airborne laser scanning data Type de document : Article/Communication Auteurs : Spencer Dakin Kuiper, Auteur ; Nicholas C. Coops, Auteur ; Piotr Tompalski, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112948 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] bassin hydrographique
[Termes IGN] cours d'eau
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] écosystème forestier
[Termes IGN] forêt ripicole
[Termes IGN] géomorphologie locale
[Termes IGN] gestion forestière durable
[Termes IGN] habitat animal
[Termes IGN] modèle numérique de surface
[Termes IGN] poisson (faune aquatique)
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] Vancouver (Colombie britannique)Résumé : (auteur) Understanding changes in salmonid populations and their habitat is a critical issue given changing climate, their importance as a keystone species, and their cultural significance. Terrain features such as slope, gradient, and morphology, as well as forest structure attributes including canopy cover, height, and presence of on ground coarse wood, all influence the quality and quantity of salmonid habitat in forested ecosystems. The increasing availability of Airborne Laser Scanning (ALS) data for forest applications offers an opportunity to utilize these data for assessing the quality and quantity of habitat, which is often costly and difficult to characterize. ALS data provides detailed and accurate Digital Elevation Models (DEMs) under forest canopies, which in turn enable the characterization of detailed stream networks, as well as stream and terrain attributes important to salmonids. At the Nahmint watershed on Vancouver Island, British Columbia, Canada, we sampled six, 200 m long stream reaches, describing a range of terrain and stream features following standard data collection protocols. Our objective in this research was to use ALS data to estimate three attributes from the 3D point cloud and DEM that are known to be important for salmonids, including bankfull width,instream wood and discrete stream morphological units. Results indicate that ALS-based estimates had strong, significant, correlations with field-measured attributes (with Pearson's correlation of 0.80 and 0.81 for bankfull width and instream wood, respectively). Bankfull width was slightly underestimated using the ALS data (Bias = −1.01 m; MAD = 1.89 m; RMSD = 2.05 m) and 80% of instream wood pieces were detected. Using ALS-derived predictors in a Random Forest model, discrete stream morphological units (i.e. pools, riffles, glides, cascades) were classified with an overall accuracy of 85%, with pools having the highest user's class accuracy at 96%. Results presented herein indicate that ALS data can be used to provide a fine scale characterization of stream attributes that are required to identify salmonid habitat, providing critical information for sustainable forest management decision making, and providing a foundation for advanced salmonid habitat modeling. Numéro de notice : A2022-283 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.112948 Date de publication en ligne : 24/02/2022 En ligne : https://doi.org/10.1016/j.rse.2022.112948 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100301
in Remote sensing of environment > vol 272 (April 2022) . - n° 112948[article]An improved vertical correction method for the inter-comparison and inter-validation of Integrated Water Vapour measurements / Olivier Bock in Atmospheric measurement techniques, vol 15 n° inconnu ([01/04/2022])
![]()
[article]
Titre : An improved vertical correction method for the inter-comparison and inter-validation of Integrated Water Vapour measurements Type de document : Article/Communication Auteurs : Olivier Bock , Auteur ; Pierre Bosser
, Auteur ; Carl Mears, Auteur
Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] analyse comparative
[Termes IGN] correction des altitudes
[Termes IGN] données GPS
[Termes IGN] données météorologiques
[Termes IGN] erreur systématique
[Termes IGN] montagne
[Termes IGN] régression multiple
[Termes IGN] teneur intégrée en vapeur d'eau
[Termes IGN] zone intertropicaleRésumé : (auteur) Integrated Water Vapour (IWV) measurements from similar or different techniques are often inter-compared for calibration and validation purposes. Results are usually assessed in terms of bias (difference of the means), standard deviation of the differences, and linear fit slope and offset (intercept) estimates. When the instruments are located at different elevations, a correction must be applied to account for the vertical displacement between the sites. Empirical formulations are traditionally used for this correction. In this paper, we show that the widely-used correction model based on a standard, exponential, profile for water vapour cannot properly correct the bias, slope, and offset parameters simultaneously. Correcting the bias with this model degrades the slope and offset estimates, and vice-versa. This paper proposes an improved correction model which overcomes these limitations. The model uses a multi-linear regression of slope and offset parameters from a radiosonde climatology. It is able to predict monthly parameters with a root-mean-square error smaller than 0.5 kg m-2 for height differences up to 500 m. The method is applied to the inter-comparison of GPS IWV data in a tropical mountainous area and to the inter-validation of GPS and satellite microwave radiometer data. This paper also emphasizes the need for using a slope and offset regression method that accounts for errors in both variables and for correctly specifying these errors. Numéro de notice : A2022-327 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/amt-2022-40 Date de publication en ligne : 21/04/2022 En ligne : https://doi.org/10.5194/amt-2022-40 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100492
in Atmospheric measurement techniques > vol 15 n° inconnu [01/04/2022][article]Aboveground biomass of salt-marsh vegetation in coastal wetlands: Sample expansion of in situ hyperspectral and Sentinel-2 data using a generative adversarial network / Chen Chen in Remote sensing of environment, vol 270 (March 2022)
![]()
[article]
Titre : Aboveground biomass of salt-marsh vegetation in coastal wetlands: Sample expansion of in situ hyperspectral and Sentinel-2 data using a generative adversarial network Type de document : Article/Communication Auteurs : Chen Chen, Auteur ; Yi Ma, Auteur ; Guangbo Ren, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112885 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte thématique
[Termes IGN] image hyperspectrale
[Termes IGN] image Sentinel-MSI
[Termes IGN] littoral
[Termes IGN] marais salant
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) Coastal wetlands are main components of the “blue carbon” ecosystems in coastal zones. Salt-marsh biomass is especially important regarding climate-change mitigation. Generating high precision biomass maps for evaluating the ecological functions of coastal wetlands is essential; however, conducting accurate biomass inversions with limited in situ observations from coastal wetlands is challenging. We propose a generative adversarial network with a constrained factor model (GAN-CF) for expanding limited in situ salt-marsh biomass observations. We used Sentinel-2 images and a deep belief network based on the conjugate gradient method (CG-DBN) for obtaining land-cover maps and the salt-marsh distribution (species: Phragmites australis, Suaeda glauca, Spartina alterniflora, and mixed species dominated by Tamarix chinensis) in the study area. This study bridges in situ hyperspectral and Sentinel-2 multispectral data by a satellite-band equivalent conversion model. The biomass and multispectral data derived from Sentinel-2 were used as input for the proposed GAN-CF model, which produced and constrained the generated samples based on the features (i.e., spectra, vegetation index, and biomass) of the in situ observations. Aboveground biomass (AGB) maps at 10-m spatial resolution were produced by constructing multiple linear regression models (MLRMs) based on the generated samples of each salt-marsh type using Sentinel-2 images. The quantity and richness of the generated samples improved the AGB estimations in the study area. The inversion accuracy of S. alterniflora was significantly improved (RMSE = 3.71 Mg/ha); the estimated AGB was strongly related to the in situ observations (R = 0.923). The estimated AGB was validated using in situ observations. The total amount of salt-marsh AGB in the study area in 2019 was estimated at 2.36 × 105 Mg, with 7.95 Mg/ha average. The salt-marsh biomass in decreasing order was as follows: P. australis (12.7 Mg/ha) > S. alterniflora (11.5 Mg/ha) > mixed species (8.97 Mg/ha) > S. glauca (2.18 Mg/ha). The salt-marsh area in decreasing order was as follows: S. glauca (10,410 ha) > P. australis (7320 ha) > mixed species (6740 ha) > S. alterniflora (5240 ha). By a feasibility analysis we estimated the biomass based on the Sentinel-2 data covering the Yellow River delta wetland in May, July, and September 2019 and the Jiaozhou Bay wetland in September 2019 by using the generated samples. The generated samples based on the 2013–2019 in situ observations constitute a salt-marsh biomass database, which can be useful for quantifying the regional carbon storage and ecological restoration monitoring. Numéro de notice : A2022-128 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112885 Date de publication en ligne : 07/01/2022 En ligne : https://doi.org/10.1016/j.rse.2021.112885 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99710
in Remote sensing of environment > vol 270 (March 2022) . - n° 112885[article]Challenges related to the determination of altitudes of mountain peaks presented on cartographic sources / Katarzyna Chwedczuk in Geodetski vestnik, vol 66 n° 1 (March 2022)
PermalinkMonitoring coastal vulnerability by using DEMs based on UAV spatial data / Antonio Minervino Amodio in ISPRS International journal of geo-information, vol 11 n° 3 (March 2022)
PermalinkUsing vertices of a triangular irregular network to calculate slope and aspect / Guanghui Hu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
PermalinkMapping active paddy rice area over monsoon asia using time-series Sentinel-2 images in Google earth engine : a case study over lower gangetic plain / Arabinda Maiti in Geocarto international, vol 37 n° inconnu ([25/01/2022])
PermalinkApplication of deep learning with stratified K-fold for vegetation species discrimation in a protected mountainous region using Sentinel-2 image / Efosa Gbenga Adagbasa in Geocarto international, vol 37 n° 1 ([01/01/2022])
PermalinkForest fire susceptibility assessment using google earth engine in Gangwon-do, Republic of Korea / Yong Piao in Geomatics, Natural Hazards and Risk, vol 13 n° 1 (2022)
PermalinkHistorical shoreline analysis and field monitoring at Ennore coastal stretch along the Southeast coast of India / M. Dhananjayan in Marine geodesy, vol 45 n° 1 (January 2022)
PermalinkA comparative approach of support vector machine kernel functions for GIS-based landslide susceptibility mapping / Khalil Valizadeh Kamran in Applied geomatics, vol 13 n° 4 (December 2021)
PermalinkEstimation of individual tree stem biomass in an uneven-aged structured coniferous forest using multispectral LiDAR data / Nikos Georgopoulos in Remote sensing, vol 13 n° 23 (December-1 2021)
PermalinkGIS to identify exposed shoreline sectors to wave impacts: case of El Tarf coast / Abdeldjalil Goumrasa in Applied geomatics, vol 13 n° 4 (December 2021)
Permalink