Descripteur



Etendre la recherche sur niveau(x) vers le bas
Geo-spatially modelling dengue epidemics in urban cities: a case study of Lahore, Pakistan / Muhammad Imran in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : Geo-spatially modelling dengue epidemics in urban cities: a case study of Lahore, Pakistan Type de document : Article/Communication Auteurs : Muhammad Imran, Auteur ; Yasra Hamid, Auteur ; Abeer Mazher, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 197 - 211 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] diptère
[Termes descripteurs IGN] maladie tropicale
[Termes descripteurs IGN] modélisation spatiale
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Pakistan
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] régression logistique
[Termes descripteurs IGN] risque sanitaire
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] télédétection spatiale
[Termes descripteurs IGN] zone intertropicale
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) The study objective is to predict the epidemiological impact of dengue fever arbovirosis in urban tropical areas of Pakistan. To do so, we used the GPS-based data of the Aedes larvae collected during 2014–2015 in Lahore. We developed a Geographically Weighted Logistic Regression (GWLR) model for Geospatially predicting larvae presence or absence in Lahore. Data on rainfall, temperature are included along with time series of the normalized difference vegetation index (NDVI) derived from Landsat imagery. We observed a high spatial variability of the GWLR parameter estimates of these variables in the study area. The GWLR model significantly (R2a = 0.78) explained the presence or absence of Aedes larvae with temperature, rainfall and NDVI variables in South and Southeast of the study area. In the North and North-West, however, GWLR relationships were observed weak in highly populated areas. Interpolating GWLR coefficients generate more accurate maps of Aedes larvae presence or absence. Numéro de notice : A2021-118 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1614100 date de publication en ligne : 10/06/2020 En ligne : https://doi.org/10.1080/10106049.2019.1614100 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96932
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 197 - 211[article]Geographically masking addresses to study COVID-19 clusters / Walid Houfaf-Khoufaf in International Journal of Health Geographics, vol inconnu (2021)
![]()
[article]
Titre : Geographically masking addresses to study COVID-19 clusters Type de document : Article/Communication Auteurs : Walid Houfaf-Khoufaf, Auteur ; Guillaume Touya , Auteur
Année de publication : 2021 Projets : 1-Pas de projet / Note générale : bibliographie
10.21203/rs.3.rs-128679/v1 DOI d'attenteLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] adresse postale
[Termes descripteurs IGN] anonymisation
[Termes descripteurs IGN] carte sanitaire
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] surveillance sanitaire
[Termes descripteurs IGN] traitement de données localiséesRésumé : (auteur) The spatio-temporal analysis of cases is a good way an epidemic, and the recent COVID-19 pandemic unfortunately generated a huge amount of data. But analysing this raw data, with for instance the address of the people who contracted COVID-19, raises some privacy issues, and geomasking is necessary to preserve both people privacy and the spatial accuracy required for analysis. This paper proposes dierent geomasking techniques adapted to this COVID-19 data. Methods: Different techniques are adapted from the literature, and tested on a synthetic dataset mimicking the COVID-19 spatio-temporal spreading in Paris and a more rural nearby region. Theses techniques are assessed in terms of k-anonymity and cluster preservation. Results: Three adapted geomasking techniques are proposed: aggregation, bimodal gaussian perturbation, and simulated crowding. All three can be useful in different use cases, but the bimodal gaussian perturbation is the overall best techniques, and the simulated crowding is the most promising one, provided some improvements are introduced to avoid points with a low k-anonymity. Conclusions: It is possible to use geomasking techniques on addresses of people who caught COVID-19, while preserving the important spatial patterns. Numéro de notice : A2021-065 Affiliation des auteurs : LaSTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.21203/rs.3.rs-128679/v1 En ligne : https://doi.org/10.21203/rs.3.rs-128679/v1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96857
in International Journal of Health Geographics > vol inconnu (2021)[article]Local fuzzy geographically weighted clustering: a new method for geodemographic segmentation / George Grekousis in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
![]()
[article]
Titre : Local fuzzy geographically weighted clustering: a new method for geodemographic segmentation Type de document : Article/Communication Auteurs : George Grekousis, Auteur Année de publication : 2021 Article en page(s) : pp 152 - 174 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] données démographiques
[Termes descripteurs IGN] New York (Etats-Unis ; ville)
[Termes descripteurs IGN] optimisation par essaim de particules
[Termes descripteurs IGN] pondération
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] santé
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] voisinage (topologie)Résumé : (auteur) Fuzzy geographically weighted clustering has been proposed as an approach for improving fuzzy c-means algorithm when applied to geodemographic analysis. This clustering method allows a spatial entity to belong to more than one cluster with varying degrees, namely, membership values. Although fuzzy geographically weighted clustering attempts to create geographically aware clusters, it partially fails to trace spatial dependence and heterogeneity because, as a global metric, the membership values are calculated across the entire set of spatial entities. Here we introduce the first local version of fuzzy geographically weighted clustering, ‘local fuzzy geographically weighted clustering.’ In local fuzzy geographically weighted clustering, the membership values of a spatial entity are updated only according to the membership values of the spatial entities within its neighborhood and not across the entire set of entities, as originally proposed by the global metric. Additionally, we apply particle swarm optimization meta-heuristic to overcome the random initialization problem regarding the fuzzy c-means algorithm. To evaluate our method we compare local fuzzy geographically weighted clustering to global fuzzy geographically weighted clustering using a cancer incident benchmark dataset for Manhattan, New York. The results show that local fuzzy geographically weighted clustering outperforms the global version in all experimental settings. Numéro de notice : A2021-022 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1808221 date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.1080/13658816.2020.1808221 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96525
in International journal of geographical information science IJGIS > vol 35 n° 1 (January 2021) . - pp 152 - 174[article]Exploratory bivariate and multivariate geovisualizations of a social vulnerability index / Georgianna Strode in Cartographic perspectives, n° 95 (July 2020)
![]()
[article]
Titre : Exploratory bivariate and multivariate geovisualizations of a social vulnerability index Type de document : Article/Communication Auteurs : Georgianna Strode, Auteur ; Victor Mesev, Auteur ; Susanne Bleisch, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 19 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] analyse bivariée
[Termes descripteurs IGN] analyse multivariée
[Termes descripteurs IGN] analyse spatiale
[Termes descripteurs IGN] carte thématique
[Termes descripteurs IGN] données socio-économiques
[Termes descripteurs IGN] ethnie
[Termes descripteurs IGN] Floride (Etats-Unis)
[Termes descripteurs IGN] formule d'Euler
[Termes descripteurs IGN] planification stratégique
[Termes descripteurs IGN] prevention
[Termes descripteurs IGN] santé
[Termes descripteurs IGN] signe conventionnel
[Termes descripteurs IGN] sociologie
[Termes descripteurs IGN] vulnérabilité
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) In the United States, the Centers for Disease Control and Prevention (CDC) is the national agency that conducts and supports public health research and practice. Among the CDC’s many achievements is the development of a social vulnerability index (SVI) to aid planners and emergency responders when identifying vulnerable segments of the population, especially during natural hazard events. The index includes an overall social vulnerability ranking as well as four individual themes: socioeconomic, household composition & disability, ethnicity & language, and housing & transportation. This makes the SVI dataset multivariate, but it is typically viewed via maps that show one theme at a time. This paper explores a suite of cartographic techniques that can represent the SVI beyond the univariate view. Specifically, we recommend three techniques: (1) bivariate mapping to illustrate overall vulnerability and population density, (2) multivariate mapping using cartographic glyphs to disaggregate levels of the four vulnerability themes, and (3) visual analytics using Euler diagrams to depict overlap between the vulnerability themes. The CDC’s SVI, and by extension, vulnerability indices in other countries, can be viewed in a variety of cartographic forms that illustrate the location of vulnerable groups of society. Viewing data from various perspectives can facilitate the understanding and analysis of the growing amount and complexity of data. Numéro de notice : A2020-750 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.14714/CP95.1569 date de publication en ligne : 17/03/2020 En ligne : https://doi.org/10.14714/CP95.1569 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96404
in Cartographic perspectives > n° 95 (July 2020) . - 19 p.[article]Integration of spatialization and individualization: the future of epidemic modelling for communicable diseases / Meifang Li in Annals of GIS, vol 26 n° 3 (July 2020)
![]()
[article]
Titre : Integration of spatialization and individualization: the future of epidemic modelling for communicable diseases Type de document : Article/Communication Auteurs : Meifang Li, Auteur ; Xun Shi, Auteur ; Xia Li, Auteur Année de publication : 2020 Article en page(s) : pp 219 - 226 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] épidémie
[Termes descripteurs IGN] historique des données
[Termes descripteurs IGN] modèle orienté objet
[Termes descripteurs IGN] modélisation spatio-temporelle
[Termes descripteurs IGN] risque sanitaire
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] transmissibilitéRésumé : (auteur) In the past several decades, epidemic modelling for communicable diseases has experienced transitions from treating the entire study area as a whole to addressing spatial variation within the area, and from targeting the entire population to incorporating characteristics of categorized subpopulations and finally going down to the individual level. These transitions have been first driven by the recognition that generalizations of space and population in conventional epidemic modelling may have hampered the effectiveness of the modelling; they then have been supported by increasingly available data that allow depiction of detailed spatiotemporal characteristics of an epidemic, as well as those characteristics of the environment in both human and natural aspects; and finally they have been facilitated by developments in geographic information science, data science, computer science, and computing technologies. Based on a review of a variety of recently developed communicable disease models, we explicitly put forward the notions of spatialization and individualization in this area, and point out that the integration of the two is the future of communicable disease modelling. We also point out that in this area models based on the object conceptualization are good at modelling spatiotemporal process, whereas models based on the field conceptualization are good at representing spatialized information. We propose a procedural framework of epidemic modelling that implements the integration of individualization and spatialization, integration of object-based process and field-based representation, and integration of modelling that retrospectively traces infection relationships based on historical patient data and modelling that prospectively predicts such relationships of future epidemics. Numéro de notice : A2020-581 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1768438 date de publication en ligne : 25/05/2020 En ligne : https://doi.org/10.1080/19475683.2020.1768438 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95903
in Annals of GIS > vol 26 n° 3 (July 2020) . - pp 219 - 226[article]Spatiotemporally Varying Coefficients (STVC) model: a Bayesian local regression to detect spatial and temporal nonstationarity in variables relationships / Chao Song in Annals of GIS, vol 26 n° 3 (July 2020)
PermalinkA web-based spatial decision support system for monitoring the risk of water contamination in private wells / Yu Lan in Annals of GIS, vol 26 n° 3 (July 2020)
PermalinkEstimating and interpreting fine-scale gridded population using random forest regression and multisource data / Yun Zhou in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
PermalinkEstimating spatio-temporal air temperature in London (UK) using machine learning and earth observation satellite data / Rochelle Schneider dos Santos in International journal of applied Earth observation and geoinformation, vol 88 (June 2020)
PermalinkMapping urban grey and green structures for liveable cities using a 3D enhanced OBIA approach and vital statistics / E. Banzhaf in Geocarto international, vol 35 n° 6 ([01/05/2020])
PermalinkUsing GIS for disease mapping and clustering in Jeddah, Saudi Arabia / Abdulkader Murad in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)
PermalinkAssessment of malaria hazard, vulnerability, and risks in Dire Dawa City Administration of eastern Ethiopia using GIS and remote sensing / Abdinasir Moha in Applied geomatics, vol 12 n° 1 (April 2020)
PermalinkOnline flu epidemiological deep modeling on disease contact network / Liang Zhao in Geoinformatica [en ligne], vol 24 n° 2 (April 2020)
PermalinkA comprehensive framework for studying diffusion patterns of imported dengue with individual-based movement data / Haiyan Tao in International journal of geographical information science IJGIS, vol 34 n° 3 (March 2020)
PermalinkOptimizing arbovirus surveillance using risk mapping and coverage modelling / Joni A. Downs in Annals of GIS, Vol 26 n° 1 (January 2020)
Permalink