Descripteur
Documents disponibles dans cette catégorie (137)



Etendre la recherche sur niveau(x) vers le bas
Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models / Xikun Hu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
![]()
[article]
Titre : Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models Type de document : Article/Communication Auteurs : Xikun Hu, Auteur ; Puzhao Zhang, Auteur ; Yifang Ban, Auteur Année de publication : 2023 Article en page(s) : pp 228 - 240 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dommage
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] incendie de forêt
[Termes IGN] jeu de données localisées
[Termes IGN] segmentation sémantique
[Termes IGN] surveillance forestière
[Termes IGN] zone sinistréeRésumé : (auteur) Nowadays Earth observation satellites provide forest fire authorities and resource managers with spatial and comprehensive information for fire stabilization and recovery. Burn severity mapping is typically performed by classifying bi-temporal indices (e.g., dNBR, and RdNBR) using thresholds derived from parametric models incorporating field-based measurements. Analysts are currently expending considerable manual effort using prior knowledge and visual inspection to determine burn severity thresholds. In this study, we aim to employ highly automated approaches to provide spatially explicit damage level estimates. We first reorganize a large-scale Landsat-based bi-temporal burn severity assessment dataset (Landsat-BSA) by visual data cleaning based on annotated MTBS data (approximately 1000 major fire events in the United States). Then we apply state-of-the-art deep learning (DL) based methods to map burn severity based on the Landsat-BSA dataset. Experimental results emphasize that multi-class semantic segmentation algorithms can approximate the threshold-based techniques used extensively for burn severity classification. UNet-like models outperform other region-based CNN and Transformer-based models and achieve accurate pixel-wise classification results. Combined with the online hard example mining algorithm to reduce class imbalance issue, Attention UNet achieves the highest mIoU (0.78) and the highest Kappa coefficient close to 0.90. The bi-temporal inputs with ancillary spectral indices work much better than the uni-temporal multispectral inputs. The restructured dataset will be publicly available and create opportunities for further advances in remote sensing and wildfire communities. Numéro de notice : A2023-122 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.026 Date de publication en ligne : 11/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.026 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102498
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 228 - 240[article]Machine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami / Riantini Virtriana in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)
![]()
[article]
Titre : Machine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami Type de document : Article/Communication Auteurs : Riantini Virtriana, Auteur ; Agung Budi Harto, Auteur ; Fiza Wira Atmaja, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 28 - 51 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] base de données d'images
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] dommage matériel
[Termes IGN] données Copernicus
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Worldview
[Termes IGN] Indonésie
[Termes IGN] modèle numérique de surface
[Termes IGN] segmentation d'image
[Termes IGN] tsunamiRésumé : (auteur) In Indonesia, tsunamis are frequent events. In 2000–2016, there were 44 tsunami events in Indonesia, with financial losses reaching 43.38 trillion. In 2018, a tsunami occurred in the Sunda Strait due to the eruption of the Anak Krakatau Volcano, which caused many fatalities and much building damage. This study aimed to detect the building damage in the Labuan District, Banten Province. Machine learning methods were used to detect building damage using random forest with object-based techniques. No previous research has combined selected predictors into scenarios; hence, the novelty of this study is combining various random forest predictors to identify the extent of building damage using 14 predictor scenarios. In addition, field surveys were conducted two years and nine months after the tsunami to observe the changes and efforts made. The results of the random forest classification were validated and compared with three datasets, namely xBD, Copernicus, and field survey data. The results of this study can help classify the level of building damage using satellite imagery to improve mitigation in tsunami-prone areas. Numéro de notice : A2023-037 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/19475705.2022.2147455 Date de publication en ligne : 07/12/2022 En ligne : https://doi.org/10.1080/19475705.2022.2147455 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102307
in Geomatics, Natural Hazards and Risk > vol 14 n° 1 (2023) . - pp 28 - 51[article]Rapid mapping of seismic intensity assessment using ground motion data calculated from early aftershocks selected by GIS spatial analysis / Huaiqun Zhao in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)
![]()
[article]
Titre : Rapid mapping of seismic intensity assessment using ground motion data calculated from early aftershocks selected by GIS spatial analysis Type de document : Article/Communication Auteurs : Huaiqun Zhao, Auteur ; Yijiao Jia, Auteur ; Wenkai Chen, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 1 - 21 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] cartographie thématique
[Termes IGN] Chine
[Termes IGN] distribution spatiale
[Termes IGN] dommage
[Termes IGN] régression
[Termes IGN] sismologie
[Termes IGN] zone sinistrée
[Termes IGN] zone tamponRésumé : (auteur) Following a major earthquake, disaster information services must deliver accurate damage assessment results during the emergency ‘black box’ phase when data is scarce. Seismic intensity maps contain crucial information for determining the damage in the affected area. For earthquakes with Mw between 5.5 and 7, this study proposes using GIS analysis to mine aftershock events in early aftershock sequences that are closely related to the mainshock fault, and then using these events to generate seismic intensity assessment maps. Regression curves were first obtained using a nonparametric method (rLowess) to analyse the geographical coordinates of early aftershocks. Then, a buffer of 1 or 1.5 km radius was made for the curve, and the aftershocks in the buffer were used to calculate the predicted peak ground velocity (PGV) values over a specific km-grid range. Finally, rapid mapping of seismic intensity was assessed based on the intensity scale. This straightforward and repeatable method employs seismic station data obtained shortly after the mainshock. The assessed seismic intensity accurately reflects the location and extent of the hardest hit areas and can be cross-referenced with geophysical results to accurately assess the damage in the affected areas. Numéro de notice : A2023-035 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/POSITIONNEMENT Nature : Article DOI : 10.1080/19475705.2022.2160663 Date de publication en ligne : 02/01/2023 En ligne : https://doi.org/10.1080/19475705.2022.2160663 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102304
in Geomatics, Natural Hazards and Risk > vol 14 n° 1 (2023) . - pp 1 - 21[article]Simplified automatic prediction of the level of damage to similar buildings affected by river flood in a specific area / David Marín-García in Sustainable Cities and Society, vol 88 (January 2023)
![]()
[article]
Titre : Simplified automatic prediction of the level of damage to similar buildings affected by river flood in a specific area Type de document : Article/Communication Auteurs : David Marín-García, Auteur ; Juan Rubio-Gómez-Torga, Auteur ; Manuel Duarte-Pinheiro, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104251 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] acquisition de données
[Termes IGN] Andalousie
[Termes IGN] apprentissage automatique
[Termes IGN] bassin hydrographique
[Termes IGN] bâtiment
[Termes IGN] cartographie des risques
[Termes IGN] coefficient de corrélation
[Termes IGN] dommage matériel
[Termes IGN] évaluation des paramètres
[Termes IGN] image à haute résolution
[Termes IGN] modèle de simulation
[Termes IGN] zone inondableRésumé : (auteur) Flooding due to overflowing rivers affects the construction elements of many buildings. Although significant progress has been made in predicting this damage, there is still a need to continue studying this issue. For this reason, the main goal of this research focuses on finding out if, based on a small dataset of cases of a given area, it is possible to predict at least three degrees of affectation in buildings, considering only three environmental factors (minimum distance from the river, unevenness and possible water communication). To meet this goal, the methodological approach followed considers scientific literature review and collection and analysis of a small dataset from 101 buildings that have been affected by floods in the Guadalquivir River basin (Andalusia. Spain). After analyzing this data, algorithms based on machine learning (ML) are applied to predict the degree of affection. The results, analysis and conclusions indicate that, if the study focuses on a specific area and similar buildings, using a correlation matrix and ML algorithms such as the "Decision Tree" with cross-validation, around 90% can be achieved in the "Recall" and "Precision" of "High-Level-Affection" class, and an “Accuracy” around 80% in general. Numéro de notice : A2023-006 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scs.2022.104251 Date de publication en ligne : 15/10/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104251 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102093
in Sustainable Cities and Society > vol 88 (January 2023) . - n° 104251[article]Challenges and limitations of earthquake-induced building damage mapping techniques using remote sensing images : A systematic review / Sahar S. Matin in Geocarto international, Vol 37 n° 21 ([01/10/2022])
![]()
[article]
Titre : Challenges and limitations of earthquake-induced building damage mapping techniques using remote sensing images : A systematic review Type de document : Article/Communication Auteurs : Sahar S. Matin, Auteur ; Biswajeet Pradhan, Auteur Année de publication : 2022 Article en page(s) : pp 6186 - 6212 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] cartographie thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déformation d'édifice
[Termes IGN] détection de changement
[Termes IGN] dommage matériel
[Termes IGN] données lidar
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] secours d'urgence
[Termes IGN] séismeRésumé : (auteur) Assessing the extent and level of building damages is crucial to support post-earthquake rescue and relief activities. There is a large body of literature proposing novel frameworks for automating earthquake-induced building damage mapping using high-resolution remote sensing images. Yet, its deployment in real-world scenarios is largely limited to the manual interpretation of images. Although manual interpretation is costly and labor-intensive, it is preferred over automatic and semi-automatic building damage mapping frameworks such as machine learning and deep learning because of its reliability. Therefore, this review paper explores various automatic and semi-automatic building damage mapping techniques with a quest to understand the pros and cons of different methodologies to narrow the gap between research and practice. Further, the research gaps and opportunities are identified for the future development of real-world scenarios earthquake-induced building damage mapping. This review can serve as a guideline for researchers, decision-makers, and practitioners in the emergency management service domain. Numéro de notice : A2022-719 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1933213 Date de publication en ligne : 07/06/2021 En ligne : https://doi.org/10.1080/10106049.2021.1933213 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101651
in Geocarto international > Vol 37 n° 21 [01/10/2022] . - pp 6186 - 6212[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022211 SL Revue Centre de documentation Revues en salle Disponible Visualising post-disaster damage on maps: a user study / Thomas Candela in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
PermalinkSimulation d'ouragans et de collectes de déchets sur QGIS pour l'amélioration de la collecte des déchets post-ouragan / Quy Thy Truong in Cartes & Géomatique, n° 247-248 (mars-juin 2022)
PermalinkDetection of damaged buildings after an earthquake with convolutional neural networks in conjunction with image segmentation / Ramazan Unlu in The Visual Computer, vol 38 n° 2 (February 2022)
PermalinkThree-Dimensional point cloud analysis for building seismic damage information / Fan Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 2 (February 2022)
PermalinkAutomatic extraction of damaged houses by earthquake based on improved YOLOv5: A case study in Yangbi / Yafei Jing in Remote sensing, vol 14 n° 2 (January-2 2022)
PermalinkOBIA-based extraction of artificial terrace damages in the Loess plateau of China from UAV photogrammetry / Xuan Fang in ISPRS International journal of geo-information, vol 10 n° 12 (December 2021)
PermalinkA repeatable change detection approach to map extreme storm-related damages caused by intense surface runoff based on optical and SAR remote sensing: Evidence from three case studies in the South of France / Arnaud Cerbelaud in ISPRS Journal of photogrammetry and remote sensing, Vol 182 (December 2021)
PermalinkDisaster intensity-based selection of training samples for remote sensing building damage classification / Luis Moya in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
PermalinkLearning from multimodal and multitemporal earth observation data for building damage mapping / Bruno Adriano in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
PermalinkPotentialité des données satellitaires Sentinel-2 pour la cartographie de l’impact des feux de végétation en Afrique tropicale : application au Togo / Yawo Konko in Bois et forêts des tropiques, n° 347 ([02/04/2021])
Permalink