Descripteur



Etendre la recherche sur niveau(x) vers le bas
Learning from multimodal and multitemporal earth observation data for building damage mapping / Bruno Adriano in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
![]()
[article]
Titre : Learning from multimodal and multitemporal earth observation data for building damage mapping Type de document : Article/Communication Auteurs : Bruno Adriano, Auteur ; Naoto Yokoya, Auteur ; Junshi Xia, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 132 - 143 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] catastrophe naturelle
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] cyclone
[Termes descripteurs IGN] dommage
[Termes descripteurs IGN] données multitemporelles
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image optique
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] observation de la Terre
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] séisme
[Termes descripteurs IGN] surveillance d'ouvrage
[Termes descripteurs IGN] tsunamiRésumé : (auteur) Earth observation (EO) technologies, such as optical imaging and synthetic aperture radar (SAR), provide excellent means to continuously monitor ever-growing urban environments. Notably, in the case of large-scale disasters (e.g., tsunamis and earthquakes), in which a response is highly time-critical, images from both data modalities can complement each other to accurately convey the full damage condition in the disaster aftermath. However, due to several factors, such as weather and satellite coverage, which data modality will be the first available for rapid disaster response efforts is often uncertain. Hence, novel methodologies that can utilize all accessible EO datasets are essential for disaster management. In this study, we developed a global multimodal and multitemporal dataset for building damage mapping. We included building damage characteristics from three disaster types, namely, earthquakes, tsunamis, and typhoons, and considered three building damage categories. The global dataset contains high-resolution (HR) optical imagery and high-to-moderate-resolution SAR data acquired before and after each disaster. Using this comprehensive dataset, we analyzed five data modality scenarios for damage mapping: single-mode (optical and SAR datasets), cross-modal (pre-disaster optical and post-disaster SAR datasets), and mode fusion scenarios. We defined a damage mapping framework for semantic segmentation of damaged buildings based on a deep convolutional neural network (CNN) algorithm. We also compared our approach to another state-of-the-art model for damage mapping. The results indicated that our dataset, together with a deep learning network, enabled acceptable predictions for all the data modality scenarios. We also found that the results from cross-modal mapping were comparable to the results obtained from a fusion sensor and optical mode analysis. Numéro de notice : A2021-272 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.016 date de publication en ligne : 17/03/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.016 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97343
in ISPRS Journal of photogrammetry and remote sensing > vol 175 (May 2021) . - pp 132 - 143[article]Damage detection using SAR coherence statistical analysis, application to Beirut, Lebanon / Tamer ElGharbawi in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
![]()
[article]
Titre : Damage detection using SAR coherence statistical analysis, application to Beirut, Lebanon Type de document : Article/Communication Auteurs : Tamer ElGharbawi, Auteur ; Fawzi Zarzoura, Auteur Année de publication : 2021 Article en page(s) : pp 1 - 9 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] Beyrouth
[Termes descripteurs IGN] catastrophe
[Termes descripteurs IGN] corrélation
[Termes descripteurs IGN] décorrélation
[Termes descripteurs IGN] dommage matériel
[Termes descripteurs IGN] étude d'impact
[Termes descripteurs IGN] filtre passe-haut
[Termes descripteurs IGN] image radar moiréeRésumé : (auteur) Early well-coordinated response during unexpected catastrophes can define the near future of the stricken regions. Beirut city, Lebanon, was one of the unfortunate regions to endure the horrific ordeal of an unexpected explosion that caused thousands of human casualties, billions of dollars’ worth of property damage, and destroyed its main maritime entry point. In this paper, we identify damaged regions and classify their severity using a simple and robust SAR correlation technique. We employ phase coherence and amplitude correlation of a SAR stack to estimate pixels’ damage probability using hypothesis testing. We use a spatial phase filter applied in the frequency domain to improve the estimated coherence by removing the spatial decorrelation component of the total estimated coherence. Using this filter improved the coherence of nearly 44.2% of pixels identified with coherence less than 0.25 in our study area. The estimated damaged regions are presented and compared against a damage map issued by Advanced Rapid Imaging and Analysis (ARIA) which shows an average agreement of 68.3%. Also, a fine agreement was observed when compared to optical satellite images. Numéro de notice : A2021-100 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.00 date de publication en ligne : 15/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96871
in ISPRS Journal of photogrammetry and remote sensing > vol 173 (March 2021) . - pp 1 - 9[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021031 SL Revue Centre de documentation Revues en salle Disponible 081-2021033 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2021032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December 2020)
![]()
[article]
Titre : A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data Type de document : Article/Communication Auteurs : Minkyung Chung, Auteur ; Youkyung Han, Auteur ; Yongil Kim, Auteur Année de publication : 2020 Article en page(s) : n° 3835 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] aide à la décision
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] Corée du sud
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] dommage
[Termes descripteurs IGN] estimation par noyau
[Termes descripteurs IGN] flou
[Termes descripteurs IGN] gestion des risques
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] image Geoeye
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image PlanetScope
[Termes descripteurs IGN] incendie de forêt
[Termes descripteurs IGN] Normalized Difference Vegetation IndexRésumé : (auteur) The application of remote sensing techniques for disaster management often requires rapid damage assessment to support decision-making for post-treatment activities. As the on-demand acquisition of pre-event very high-resolution (VHR) images is typically limited, PlanetScope (PS) offers daily images of global coverage, thereby providing favorable opportunities to obtain high-resolution pre-event images. In this study, we propose an unsupervised change detection framework that uses post-fire VHR images with pre-fire PS data to facilitate the assessment of wildfire damage. To minimize the time and cost of human intervention, the entire process was executed in an unsupervised manner from image selection to change detection. First, to select clear pre-fire PS images, a blur kernel was adopted for the blind and automatic evaluation of local image quality. Subsequently, pseudo-training data were automatically generated from contextual features regardless of the statistical distribution of the data, whereas spectral and textural features were employed in the change detection procedure to fully exploit the properties of different features. The proposed method was validated in a case study of the 2019 Gangwon wildfire in South Korea, using post-fire GeoEye-1 (GE-1) and pre-fire PS images. The experimental results verified the effectiveness of the proposed change detection method, achieving an overall accuracy of over 99% with low false alarm rate (FAR), which is comparable to the accuracy level of the supervised approach. The proposed unsupervised framework accomplished efficient wildfire damage assessment without any prior information by utilizing the multiple features from multi-sensor bi-temporal images. Numéro de notice : A2020-793 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12223835 date de publication en ligne : 22/11/2020 En ligne : https://doi.org/10.3390/rs12223835 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96570
in Remote sensing > vol 12 n° 22 (December 2020) . - n° 3835[article]Towards dynamic forest trafficability prediction using open spatial data, hydrological modelling and sensor technology / Aura Salmivaara in Forestry, an international journal of forest research, vol 93 n° 5 (October 2020)
![]()
[article]
Titre : Towards dynamic forest trafficability prediction using open spatial data, hydrological modelling and sensor technology Type de document : Article/Communication Auteurs : Aura Salmivaara, Auteur ; Samuli Launiainen, Auteur ; Jari Perttunen, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 662 - 674 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Environnement
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] chemin forestier
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] dégradation des sols
[Termes descripteurs IGN] dommage
[Termes descripteurs IGN] données localisées libres
[Termes descripteurs IGN] exploitation forestière
[Termes descripteurs IGN] Finlande
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] modèle hydrographiqueRésumé : (auteur) Forest harvesting operations with heavy machinery can lead to significant soil rutting. Risks of rutting depend on the soil bearing capacity which has considerable spatial and temporal variability. Trafficability prediction is required in the selection of suitable operation sites for a given time window and conditions, and for on-site route optimization during the operation. Integrative tools are necessary to plan and carry out forest operations with minimal negative ecological and economic impacts. This study demonstrates a trafficability prediction framework that utilizes a spatial hydrological model and a wide range of spatial data. Trafficability was approached by producing a rut depth prediction map at a 16 × 16 m grid resolution, based on the outputs of a general linear mixed model developed using field data from Southern Finland, modelled daily soil moisture, spatial forest inventory and topography data, along with field measured rolling resistance and information on the mass transported through the grid cells. Dynamic rut depth prediction maps were produced by accounting for changing weather conditions through hydrological modelling. We also demonstrated a generalization of the rolling resistance coefficient, measured with harvester CAN-bus channel data. Future steps towards a nationwide prediction framework based on continuous data flow, process-based modelling and machine learning are discussed. Numéro de notice : A2020-790 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1093/forestry/cpaa010 date de publication en ligne : 05/10/2020 En ligne : https://doi.org/10.1093/forestry/cpaa010 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96559
in Forestry, an international journal of forest research > vol 93 n° 5 (October 2020) . - pp 662 - 674[article]Optimal segmentation of high spatial resolution images for the classification of buildings using random forests / James Bialas in International journal of applied Earth observation and geoinformation, vol 82 (October 2019)
![]()
[article]
Titre : Optimal segmentation of high spatial resolution images for the classification of buildings using random forests Type de document : Article/Communication Auteurs : James Bialas, Auteur ; Thomas Oommen, Auteur ; Timothy C. Havens, Auteur Année de publication : 2019 Article en page(s) : pp Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] bâtiment
[Termes descripteurs IGN] Christchurch
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] dommage matériel
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image aérienne
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] qualité du processus
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] séisme
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) In the application of machine learning to geographic object based image analysis, several parameters influence overall classifier performance. One of the first parameters is segmentation size—for example, how many pixels should be grouped together to form an image object. Often, trial and error methods are used to obtain segmentation parameters that best delineate the borders of real world objects. Several attempts at automated methods have produced promising results, but manual intervention is still necessary. Meanwhile, numerous measures of segmentation quality have been defined, but their relationship to classifier performance is not then directly shown. For example, as measures of segmentation quality improve, do classification results improve as well? Our work considers the problem of building classification in high resolution aerial imagery of urban areas. Based on user defined training polygons generated with or without a reference segmentation, we have found several measures of segmentation quality and feature performance that can help users narrow the range of appropriate segmentations. Furthermore, our work finds that given this range, performance of machine learning algorithms remains relatively constant for any given segmentation as long as features used for classification are chosen correctly. We find that the range of scale parameters capable of producing an accurate classification is much broader than typically assumed and trial and error methods for finding this parameter may be an acceptable approach. Numéro de notice : A2019-472 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2019.06.005 date de publication en ligne : 08/06/2019 En ligne : https://doi.org/https://doi.org/10.1016/j.jag.2019.06.005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93632
in International journal of applied Earth observation and geoinformation > vol 82 (October 2019) . - pp[article]PermalinkEstimating storm damage with the help of low-altitude photographs and different sampling designs and estimators / Pekka Hyvönen in Silva fennica, vol 52 n° 3 ([01/08/2018])
PermalinkCombining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessment / Bernd Resch in Cartography and Geographic Information Science, Vol 45 n° 4 (July 2018)
PermalinkContextual classification using photometry and elevation data for damage detection after an earthquake event / Ewelina Rupnik in European journal of remote sensing, vol 51 n° 1 (2018)
PermalinkAssessing forest windthrow damage using single-date, post-event airborne laser scanning data / Gherardo Chirici in Forestry, an international journal of forest research, vol 91 n° 1 (January 2018)
PermalinkStand-level wind damage can be assessed using diachronic photogrammetric canopy height models / Jean-Pierre Renaud in Annals of Forest Science [en ligne], vol 74 n° 4 (December 2017)
PermalinkSemiautomatic detection and classification of materials in historic buildings with low-cost photogrammetric equipment / Javier Sanchez in Journal of Cultural Heritage, vol 25 (May - June 2017)
PermalinkUrban damage level mapping based on scattering mechanism investigation using fully polarimetric SAR Data for the 3.11 East Japan earthquake / Si-Wei Chen in IEEE Transactions on geoscience and remote sensing, vol 54 n° 12 (December 2016)
PermalinkAssessing the ecosystem service flood protection of a riparian forest by applying a cascade approach / Nina-Christin Barth in Ecosystem Services, vol 21 Part A (October 2016)
PermalinkExtreme events and climate change: the post-disaster dynamics of forest fires and forest storms in Sweden / Rolf Lidskog in Scandinavian journal of forest research, vol 31 n° 2 (March 2016)
Permalink