Descripteur
Documents disponibles dans cette catégorie (46)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A GIS-based method for modeling methane emissions from paddy fields by fusing multiple sources of data / Linhua Ma in Science of the total environment, vol 859 n° 1 (February 2023)
[article]
Titre : A GIS-based method for modeling methane emissions from paddy fields by fusing multiple sources of data Type de document : Article/Communication Auteurs : Linhua Ma, Auteur ; Yuanlai Cui, Auteur ; Bo Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 159917 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatio-temporelle
[Termes IGN] Chine
[Termes IGN] Corée
[Termes IGN] données multisources
[Termes IGN] Etats-Unis
[Termes IGN] humidité du sol
[Termes IGN] image à haute résolution
[Termes IGN] image infrarouge
[Termes IGN] Italie
[Termes IGN] méthane
[Termes IGN] modélisation
[Termes IGN] réflectance du sol
[Termes IGN] rizière
[Termes IGN] système d'information géographique
[Termes IGN] variation saisonnièreRésumé : (auteur) Quantification of regional methane (CH4) gas emission in the paddy fields is critical under climate warming. Mechanism models generally require numerous parameters while empirical models are too coarse. Based on the mechanism and structure of the widely used model CH4MOD, a GIS-based Regional CH4 Emission Calculation (GRMC) method was put forward by introducing multiple sources of remote sensing images, including MOD09A1, MOD11A2, MOD15A2H as well as local water management standards. The stress of soil moisture condition (f(water)) on CH4 emissions was quantified by calculating the redox potential (Eh) from days after flooding or falling dry. The f(water)-t curve was calculated under different exogenous organic matter addition. Combining the f(water)-t curve with local water management standards, the seasonal variation of f(water) was obtained. It was proven that f(water) was effective in reflecting the regulation role of soil moisture condition. The GRMC was tested at four Eddy Covariance (EC) sites: Nanchang (NC) in China, Twitchell (TWT) in the USA, Castellaro (CAS) in Italy and Cheorwon (CRK) in Korea and has been proven to well track the seasonal dynamics of CH4 emissions with R2 ranges of 0.738–0.848, RMSE ranges of 31.94–149.22 mg C/m2d and MBE ranges of −66.42- -14.79 mg C/m2d. The parameters obtained in Nanchang (NC) site in China were then applied to the Ganfu Plain Irrigation System (GFPIS), a typical rice planting area of China, to analyse the spatial-temporal variations of CH4 emissions. The total CH4 emissions of late rice in the GFPIS from 2001 to 2013 was in the range of 14.47–20.48 (103 t CH4-C). Ts caused spatial variation of CH4 production capacity, resulting in the spatial variability of CH4 emissions. Overall, the GRMC is effective in obtaining CH4 emissions from rice fields on a regional scale. Numéro de notice : A2023-015 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1016/j.scitotenv.2022.159917 Date de publication en ligne : 04/11/2022 En ligne : https://doi.org/10.1016/j.scitotenv.2022.159917 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102133
in Science of the total environment > vol 859 n° 1 (February 2023) . - n° 159917[article]Mapping active paddy rice area over monsoon asia using time-series Sentinel-2 images in Google earth engine : a case study over lower gangetic plain / Arabinda Maiti in Geocarto international, vol 38 n° inconnu ([01/01/2023])
[article]
Titre : Mapping active paddy rice area over monsoon asia using time-series Sentinel-2 images in Google earth engine : a case study over lower gangetic plain Type de document : Article/Communication Auteurs : Arabinda Maiti, Auteur ; Prasenjit Acharya, Auteur ; Srikanta Sannigrahi, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] Gange (fleuve)
[Termes IGN] Google Earth Engine
[Termes IGN] image Sentinel-SAR
[Termes IGN] Inde
[Termes IGN] mousson
[Termes IGN] plaine
[Termes IGN] rizièreRésumé : (auteur) We proposed a modification of the existing approach for mapping active paddy rice fields in monsoon-dominated areas. In the existing PPPM approach, LSWI higher than EVI at the transplantation stage enables the identification of rice fields. However, it fails to recognize the fields submerged later due to monsoon floods. In the proposed approach (IPPPM), the submerged fields, at the maximum greenness time, were excluded for better estimation. Sentinel–2A/2B time-series images were used for the year 2018 to map paddy rice over the Lower Gangetic Plain (LGP) using Google earth engine (GEE). The overall accuracy (OA) obtained from IPPPM was 85%. Further comparison with the statistical data reveals the IPPPM underestimates (slope (β1) = 0.77) the total reported paddy rice area, though R2 remains close to 0.9. The findings provide a basis for near real-time mapping of active paddy rice areas for addressing the issues of production and food security. Numéro de notice : A2022-924 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2022.2032396 En ligne : https://doi.org/10.1080/10106049.2022.2032396 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99963
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]Historical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine / Luis Carrasco in ISPRS Journal of photogrammetry and remote sensing, vol 191 (September 2022)
[article]
Titre : Historical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine Type de document : Article/Communication Auteurs : Luis Carrasco, Auteur ; Go Fujita, Auteur ; Kensuke Kito, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 277 - 289 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] cartographie historique
[Termes IGN] détection de changement
[Termes IGN] Google Earth
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] indice de végétation
[Termes IGN] Japon
[Termes IGN] phénologie
[Termes IGN] photographie aérienne
[Termes IGN] réflectance de surface
[Termes IGN] rizière
[Termes IGN] signature spectraleRésumé : (auteur) Mapping the expansion or reduction of rice fields is fundamental for food and water security, greenhouse gas emission accounting, and environmental management. The historical mapping of rice fields with satellite images is challenging because of the limited availability of remote sensing and training data from past decades. The use of phenology-based algorithms has been proposed for mapping rice fields because they can take advantage of rice fields’ characteristic spectral signature during the transplanting phase and do not need training data. However, in order to employ phenology-based algorithms effectively for the historical rice mapping of large areas, we need to incorporate automatized methods able to deal with non-usable data (e.g., cloud cover) and with spatial inconsistencies in the number of available images for each pixel. Here we propose the combination of a pixel-based, phenological algorithm with the temporal aggregation of all available Landsat images to produce national level historical maps of rice fields in Japan from the 1980s onwards. We used temporally aggregated metrics (median, percentiles, etc.), derived from spectral indices of a large number of images within the Google Earth Engine, to minimize the issue of inconsistent image availability and reduce the effects of outliers in phenology-based algorithms. We produced seven rice field maps, for the periods 1985–89, 1990–94, 1995–99, 2000–04, 2005–09, 2010–14, and 2015–19. The overall map accuracies ranged from 83% to 95% when validated with visually interpreted aerial photography. We detected a 23% decrease in the area of rice fields at a country level, although the changes varied greatly among prefectures. Here we present the first freely available historical rice field maps of Japan from the 1980s onwards, together with the source code, and a web application that enables the exploration of the maps and data relating to the derived rice field area changes. The application of temporal aggregation is promising for dealing with the gap-filling of large amounts of satellite data, reducing the issue of data outliers and providing an effective use of the historical Landsat archive for phenology-based crop detection algorithms. Our maps could greatly help researchers, conservationists and policymakers studying the drivers and consequences of rice field changes, and our methods could be extrapolated to map rice fields at large scales in other regions of the world. Numéro de notice : A2022-665 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.07.018 Date de publication en ligne : 08/08/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.07.018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101527
in ISPRS Journal of photogrammetry and remote sensing > vol 191 (September 2022) . - pp 277 - 289[article]Analysis of the land suitability for paddy fields in Tanzania using a GIS-based analytical hierarchy process / Ahmad Al-Hanbali in Geo-spatial Information Science, vol 25 n° 2 ([01/06/2022])
[article]
Titre : Analysis of the land suitability for paddy fields in Tanzania using a GIS-based analytical hierarchy process Type de document : Article/Communication Auteurs : Ahmad Al-Hanbali, Auteur ; Kenichi Shibuta, Auteur ; Bayan Alsaaideh, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 212 - 228 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] cultures irriguées
[Termes IGN] humidité du sol
[Termes IGN] précipitation
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] rizière
[Termes IGN] système d'information géographique
[Termes IGN] Tanzanie
[Termes IGN] utilisation du solRésumé : (auteur) The importance of irrigation development is considered a key factor for food security and poverty reduction because it improves crop productivity, and ensures stable expansion of agricultural production. However, irrigation development requires understanding of the available resources including the suitability of the land for agriculture. In this study, the land suitability for paddy fields was evaluated within the United Republic of Tanzania mainland by integrating the geographic information system (GIS) and analytical hierarchy process (AHP). In this study, 11 criteria based on various sources (soil type, soil drainage, soil organic carbon, soil pH, soil depth, elevation, slope, land use, topographic wetness index, temperature, and precipitation) were used. These criteria were used within the GIS-based AHP to identify the most suitable land for sustainable paddy field cultivation considering the preservation of the natural environment of forests and protected areas by examining two scenarios: rainfed condition and irrigation priority. The former ten criteria were assumed to be constant in both scenarios and were assigned the same scores, while the latter criterion (precipitation) was assigned different scores for varying amounts to plan new irrigation projects. Unsuitable land represents 72.8% of the study area, reducing the potential agriculture land (PAL) appropriate for cultivation to 27.2%. In the rainfed condition scenario, the very high and high suitability classes represent 17.6% of the total land of the study area and 64.7% of the PAL. In the irrigation priority scenario, the same classes represent 21.4% of the total land of the study area and 78.6% of the PAL. Finally, the distribution of the land suitability for both scenarios was analyzed within eight administrative irrigation zones to determine the irrigation zone with the greatest potential for paddy field cultivation. Numéro de notice : A2022-598 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10095020.2021.2004079 Date de publication en ligne : 03/12/2021 En ligne : https://doi.org/10.1080/10095020.2021.2004079 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101303
in Geo-spatial Information Science > vol 25 n° 2 [01/06/2022] . - pp 212 - 228[article]Alternative procedure to improve the positioning accuracy of orthomosaic images acquired with Agisoft Metashape and DJI P4 multispectral for crop growth observation / Toshihiro Sakamoto in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 5 (May 2022)
[article]
Titre : Alternative procedure to improve the positioning accuracy of orthomosaic images acquired with Agisoft Metashape and DJI P4 multispectral for crop growth observation Type de document : Article/Communication Auteurs : Toshihiro Sakamoto, Auteur ; Daisuke Ogawa, Auteur ; Satoko Hiura, Auteur ; Nobusuke Iwasaki, Auteur Année de publication : 2022 Article en page(s) : pp 323 - 332 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bande spectrale
[Termes IGN] blé (céréale)
[Termes IGN] chlorophylle
[Termes IGN] image à haute résolution
[Termes IGN] image captée par drone
[Termes IGN] indice de végétation
[Termes IGN] orthophotoplan numérique
[Termes IGN] point d'appui
[Termes IGN] précision du positionnement
[Termes IGN] rizière
[Termes IGN] structure-from-motionRésumé : (Auteur) Vegetation indices (VIs), such as the green chlorophyll index and normalized difference vegetation index, are calculated from visible and near-infrared band images for plant diagnosis in crop breeding and field management. The DJI P4 Multispectral drone combined with the Agisoft Metashape Structure from Motion/Multi View Stereo software is some of the most cost-effective equipment for creating high-resolution orthomosaic VI images. However, the manufacturer's procedure results in remarkable location estimation inaccuracy (average error: 3.27–3.45 cm) and alignment errors between spectral bands (average error: 2.80–2.84 cm). We developed alternative processing procedures to overcome these issues, and we achieved a higher positioning accuracy (average error: 1.32–1.38 cm) and better alignment accuracy between spectral bands (average error: 0.26–0.32 cm). The proposed procedure enables precise VI analysis, especially when using the green chlorophyll index for corn, and may help accelerate the application of remote sensing techniques to agriculture. Numéro de notice : A2022-528 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00064R2 Date de publication en ligne : 01/05/2022 En ligne : https://doi.org/10.14358/PERS.21-00064R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101379
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 5 (May 2022) . - pp 323 - 332[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 105-2022052 SL Revue Centre de documentation Revues en salle Disponible 105-2022051 SL Revue Centre de documentation Revues en salle Disponible Evaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 5 ([01/03/2022])PermalinkDynamic modelling of rice leaf area index with quad-source optical imagery and machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 3 ([01/02/2022])PermalinkPhenology-based delineation of irrigated and rain-fed paddy fields with Sentinel-2 imagery in Google Earth Engine / Daniel Marc G. dela Torre in Geo-spatial Information Science, vol 24 n° 4 (October 2021)PermalinkApplication of thermal imaging and hyperspectral remote sensing for crop water deficit stress monitoring / Gopal Krishna in Geocarto international, vol 36 n° 5 ([15/03/2021])PermalinkCombination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia / Sanjiwana Arjasakusuma in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)PermalinkAccuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets / Lamin R. Mansaray in Geocarto international, vol 35 n° 10 ([01/08/2020])PermalinkCombination of linear regression lines to understand the response of Sentinel-1 dual polarization SAR data with crop phenology - case study in Miyazaki, Japan / Emal Wali in Remote sensing, vol 12 n° 1 (January 2020)PermalinkMapping crop types, irrigated areas, and cropping intensities in heterogeneous landscapes of southern India using multi-temporal medium-resolution imagery: implications for assessing water use in agriculture / E. Heller in Photogrammetric Engineering & Remote Sensing, PERS, vol 78 n° 8 (August 2012)PermalinkValidation of Landsat-7-ETM+ thermal-band calibration and atmospheric correction whith ground-based measurements / C. Coll in IEEE Transactions on geoscience and remote sensing, vol 48 n° 1 Tome 2 (January 2010)PermalinkCharacterizing patterns of lands degradation potential and agro-ecological sustainability in Nang Rong, Thailand / W. Welsh in Photogrammetric Engineering & Remote Sensing, PERS, vol 74 n° 6 (June 2008)Permalink