Descripteur
Termes IGN > mathématiques > statistique mathématique > probabilités > stochastique > méthode de Monte-Carlo > chaîne de Markov
chaîne de Markov |
Documents disponibles dans cette catégorie (47)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
An agent-based modeling approach for public charging demand estimation and charging station location optimization at urban scale / Zhiyan Yi in Computers, Environment and Urban Systems, vol 101 (April 2023)
[article]
Titre : An agent-based modeling approach for public charging demand estimation and charging station location optimization at urban scale Type de document : Article/Communication Auteurs : Zhiyan Yi, Auteur ; Bingkun Chen, Auteur ; Xiaoyue Cathy Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101949 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] chaîne de Markov
[Termes IGN] distribution spatiale
[Termes IGN] équipement collectif
[Termes IGN] modèle orienté agent
[Termes IGN] optimisation spatiale
[Termes IGN] planification urbaine
[Termes IGN] véhicule électrique
[Termes IGN] zone urbaineRésumé : (auteur) As the market penetration of electric vehicles (EVs) increases, the surge of charging demand could potentially overload the power grid and disrupt infrastructure planning. Hence, an efficient deployment strategy of electrical vehicle supply equipment (EVSE) is much needed. This study attempts to address the EVSE problem from a microscopic perspective by formulating the problem in two steps: public charging demand simulation and charging station location optimization. Specifically, we apply agent-based modeling approach to produce high-resolution daily driving profiles within an urban-scale context using MATSim. Subsequently, we perform EV assignment based on socioeconomic attributes to determine EV adopters. Energy consumption model and public charging rule are specified for generating synthetic public charging demand and such demand is validated against real-world public charging records to guarantee the robustness of simulation results. In the second step, we apply a location approach – capacitated maximal coverage location problem (CMCLP) model – to reallocate existing charging stations with the objective of maximizing the coverage of total charging demands generated from the previous step under the budget and load capacity constraints. The entire framework is capable of modeling the spatiotemporal distribution of public charging demand in a bottom-up fashion, and provide practical support for future public EVSE installation. Numéro de notice : A2023-186 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2023.101949 Date de publication en ligne : 15/02/2023 En ligne : https://doi.org/10.1016/j.compenvurbsys.2023.101949 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102960
in Computers, Environment and Urban Systems > vol 101 (April 2023) . - n° 101949[article]Nonparametric upscaling of bark beetle infestations and management from plot to landscape level by combining individual-based with Markov chain models / Bruno Walter Pietzsch in European Journal of Forest Research, vol 142 n° 1 (February 2023)
[article]
Titre : Nonparametric upscaling of bark beetle infestations and management from plot to landscape level by combining individual-based with Markov chain models Type de document : Article/Communication Auteurs : Bruno Walter Pietzsch, Auteur ; Chris Wudel, Auteur ; Uta Berger, Auteur Année de publication : 2023 Article en page(s) : pp 129 - 144 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Allemagne
[Termes IGN] chaîne de Markov
[Termes IGN] dépérissement
[Termes IGN] insecte nuisible
[Termes IGN] métamodèle
[Termes IGN] modèle de simulation
[Termes IGN] Picea abies
[Termes IGN] santé des forêts
[Termes IGN] Scolytinae
[Termes IGN] Suisse
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Linked to climate change, drivers such as increased temperatures and decreased water availability affect forest health in complex ways by simultaneously weakening tree vitality and promoting insect pest activity. One major beneficiary of climate-induced changes is the European spruce bark beetle (Ips typographus). To improve the mechanistic understanding of climate change impacts on long-term beetle infestation risks, individual-based simulation models (IBM) such as the bark beetle dispersion model IPS-SPREADS have been proven as effective tools. However, the computational costs of IBMs limit their spatial scale of application. While these tools are best suitable to simulate bark beetle dynamics on the plot level, upscaling the process to larger areas is challenging. The larger spatial scale is, nevertheless, often required to support the selection of adequate management intervention. Here, we introduce a novel two-step approach to address this challenge: (1) we use the IPS-SPREADS model to simulate the bark beetle dispersal at a local scale by dividing the research area into 250 × 250 m grid cells; and (2) we then apply a metamodel framework to upscale the results to the landscape level. The metamodel is based on Markov chains derived from the infestation probabilities of IPS-SPREADS results and extended by considering neighbor interaction and spruce dieback of each focal cell. We validated the metamodel by comparing its predictions with infestations observed in 2017 and 2018 in the Saxon Switzerland national park, Germany, and tested sanitation felling as a measure to prevent potential further outbreaks in the region. Validation showed an improvement in predictions by introducing the model extension of beetle spreading from one cell to another. The metamodel forecasts indicated an increase in the risk of infestation for adjacent forest areas. In case of a beetle mass outbreak, sanitation felling intensities of 80 percent and above seem to mitigate further outbreak progression. Numéro de notice : A2023-139 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s10342-022-01512-1 Date de publication en ligne : 29/10/2022 En ligne : https://doi.org/10.1007/s10342-022-01512-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102694
in European Journal of Forest Research > vol 142 n° 1 (February 2023) . - pp 129 - 144[article]Modelling the future vulnerability of urban green space for priority-based management and green prosperity strategy planning in Kolkata, India: a PSR-based analysis using AHP-FCE and ANN-Markov model / Santanu Dinda in Geocarto international, vol 37 n° 22 ([10/10/2022])
[article]
Titre : Modelling the future vulnerability of urban green space for priority-based management and green prosperity strategy planning in Kolkata, India: a PSR-based analysis using AHP-FCE and ANN-Markov model Type de document : Article/Communication Auteurs : Santanu Dinda, Auteur ; Nilanjana Das Chatterjee, Auteur ; Subrata Ghosh, Auteur Année de publication : 2022 Article en page(s) : pp 6551 - 6578 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse diachronique
[Termes IGN] chaîne de Markov
[Termes IGN] changement d'occupation du sol
[Termes IGN] croissance urbaine
[Termes IGN] densité du bâti
[Termes IGN] espace vert
[Termes IGN] Inde
[Termes IGN] logique floue
[Termes IGN] modèle de simulation
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] vulnérabilité
[Termes IGN] zone urbaine denseRésumé : (auteur) Changes in land-use and land-cover (LULC) in urban areas affect the natural environment, especially urban green spaces (UGS). The present study examines the loss of UGS due to LULC transformation at different periods to predict the future vulnerable zone of UGS, based on the 'Pressure-State-Response’ framework. To calculate the weight of each factor, a combined Analytical Hierarchical Process and Fuzzy Comprehensive Evaluation method have been used. An integrated multilayer perceptron based artificial neural network and Markov chain (MLP-ANN-MC) model has been employed to predict the UGS vulnerable area in Kolkata. Results indicated that growth rates of built-up area, land-use dynamic degree, change intensity index, and proximity factors are the major responsible for UGS vulnerability. Applying the MLP-ANN-MC model, future vulnerable zones were identified for management and conservation of UGS. The methodology developed and demonstrated in this study expands LULC change analysis and provide a new dimension for UGS vulnerability assessment. Numéro de notice : A2022-726 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1952315 Date de publication en ligne : 16/07/2021 En ligne : https://doi.org/10.1080/10106049.2021.1952315 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101672
in Geocarto international > vol 37 n° 22 [10/10/2022] . - pp 6551 - 6578[article]Simulation of land use/land cover changes and urban expansion in Estonia by a hybrid ANN-CA-MCA model and utilizing spectral-textural indices / Najmeh Mozaffaree Pour in Environmental Monitoring and Assessment, vol 194 n° 9 (September 2022)
[article]
Titre : Simulation of land use/land cover changes and urban expansion in Estonia by a hybrid ANN-CA-MCA model and utilizing spectral-textural indices Type de document : Article/Communication Auteurs : Najmeh Mozaffaree Pour, Auteur ; Oleksandr Karasov, Auteur ; Iuliia Burdun, Auteur ; Tõnu Oja, Auteur Année de publication : 2022 Article en page(s) : n° 584 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] chaîne de Markov
[Termes IGN] croissance urbaine
[Termes IGN] Estonie
[Termes IGN] Google Earth Engine
[Termes IGN] image Landsat-8
[Termes IGN] modèle de simulation
[Termes IGN] occupation du sol
[Termes IGN] réseau neuronal artificielRésumé : (auteur) Over the recent two decades, land use/land cover (LULC) drastically changed in Estonia. Even though the population decreased by 11%, noticeable agricultural and forest land areas were turned into urban land. In this work, we analyzed those LULC changes by mapping the spatial characteristics of LULC and urban expansion in the years 2000–2019 in Estonia. Moreover, using the revealed spatiotemporal transitions of LULC, we simulated LULC and urban expansion for 2030. Landsat 5 and 8 data were used to estimate 147 spectral-textural indices in the Google Earth Engine cloud computing platform. After that, 19 selected indices were used to model LULC changes by applying the hybrid artificial neural network, cellular automata, and Markov chain analysis (ANN-CA-MCA). While determining spectral-textural indices is quite common for LULC classifications, utilization of these continues indices in LULC change detection and examining these indices at the landscape scale is still in infancy. This country-wide modeling approach provided the first comprehensive projection of future LULC utilizing spectral-textural indices. In this work, we utilized the hybrid ANN-CA-MCA model for predicting LULC in Estonia for 2030; we revealed that the predicted changes in LULC from 2019 to 2030 were similar to the observed changes from 2011 to 2019. The predicted change in the area of artificial surfaces was an increased rate of 1.33% to reach 787.04 km2 in total by 2030. Between 2019 and 2030, the other significant changes were the decrease of 34.57 km2 of forest lands and the increase of agricultural lands by 14.90 km2 and wetlands by 9.31 km2. These findings can develop a proper course of action for long-term spatial planning in Estonia. Therefore, a key policy priority should be to plan for the stable care of forest lands to maintain biodiversity. Numéro de notice : A2022-458 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE/URBANISME Nature : Article DOI : 10.1007/s10661-022-10266-7 Date de publication en ligne : 13/07/2022 En ligne : http://dx.doi.org/10.1007/s10661-022-10266-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101258
in Environmental Monitoring and Assessment > vol 194 n° 9 (September 2022) . - n° 584[article]Understanding the movement predictability of international travelers using a nationwide mobile phone dataset collected in South Korea / Yang Xu in Computers, Environment and Urban Systems, vol 92 (March 2022)
[article]
Titre : Understanding the movement predictability of international travelers using a nationwide mobile phone dataset collected in South Korea Type de document : Article/Communication Auteurs : Yang Xu, Auteur ; Dan Zou, Auteur ; Sangwon Park, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] chaîne de Markov
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] Corée du sud
[Termes IGN] durée de trajet
[Termes IGN] mobilité humaine
[Termes IGN] modèle de simulation
[Termes IGN] prévision à court terme
[Termes IGN] téléphone intelligent
[Termes IGN] téléphonie mobile
[Termes IGN] tourisme
[Termes IGN] voyageRésumé : (auteur) The abilities to predict tourist movements are critical to many urban applications, such as travel recommendations, targeted advertising, and infrastructure planning. Despite its importance, our understanding on the movement predictability of urban tourists and visitors is still limited, partially due to difficulties in accessing large scale mobility observations. In this study, we aim to bridge this gap by analyzing a nationwide mobile phone dataset. The dataset captures movement traces of a large number of international travelers who visited South Korea in 2018. By introducing two prediction models, one being Markov chain and the other with a recurrent neural network architecture, we assess how well travelers’ movements can be predicted under different model settings, and examine how predictability relates to travelers’ length of stay and activeness in travel patterns. Since travelers’ destination choices are quite diverse in South Korea, this enables us to further investigate the geographic variation of the models’ performance. Results show that the Markov chain model achieves an overall accuracy between 33.4% (@Acc1 metric) and 64.2% (@Acc5 metric), compared to 41.9% (@Acc1) and 67.7% (@Acc5) for the recurrent neural network model. The prediction capabilities of both models are largely unequal across individuals, with active travelers being more predictable in general. There is a notable geographic variation in the models’ performance, meaning that travelers’ movements are more predictable in some cities, but less in others. We believe this study represents a new effort in portraying the movement predictability of urban tourists and visitors. The analytical framework can be applied to assist tourism planning and service deployment in cities. Numéro de notice : A2022-085 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101753 Date de publication en ligne : 06/01/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101753 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99490
in Computers, Environment and Urban Systems > vol 92 (March 2022)[article]Novel model for predicting individuals’ movements in dynamic regions of interest / Xiaoqi Shen in GIScience and remote sensing, vol 59 n° 1 (2022)PermalinkPermalinkTourism land use simulation for regional tourism planning using POIs and cellular automata / Hong Shi in Transactions in GIS, Vol 24 n° 4 (August 2020)PermalinkComparison of spatial modelling approaches to simulate urban growth: a case study on Udaipur city, India / Biswajit Mondal in Geocarto international, vol 35 n° 4 ([15/03/2020])PermalinkBayesian inversion of convolved hidden Markov models with applications in reservoir prediction / Torstein Fjeldstad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)PermalinkLand use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process / Biswajit Nath in ISPRS International journal of geo-information, vol 9 n° 2 (February 2020)PermalinkSimulation of urban expansion via integrating artificial neural network with Markov chain – cellular automata / Tingting Xu in International journal of geographical information science IJGIS, vol 33 n° 10 (October 2019)PermalinkExamining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change / Hao Wu in International journal of geographical information science IJGIS, Vol 33 n° 5-6 (May - June 2019)PermalinkPermalinkPermalink