Descripteur
Termes IGN > mathématiques > statistique mathématique > probabilités > stochastique > méthode de Monte-Carlo > chaîne de Markov
chaîne de Markov |
Documents disponibles dans cette catégorie (46)



Etendre la recherche sur niveau(x) vers le bas
Understanding the movement predictability of international travelers using a nationwide mobile phone dataset collected in South Korea / Yang Xu in Computers, Environment and Urban Systems, vol 92 (March 2022)
![]()
[article]
Titre : Understanding the movement predictability of international travelers using a nationwide mobile phone dataset collected in South Korea Type de document : Article/Communication Auteurs : Yang Xu, Auteur ; Dan Zou, Auteur ; Sangwon Park, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] chaîne de Markov
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] Corée du sud
[Termes IGN] durée de trajet
[Termes IGN] mobilité
[Termes IGN] modèle de simulation
[Termes IGN] prévision à court terme
[Termes IGN] téléphone intelligent
[Termes IGN] téléphonie mobile
[Termes IGN] tourisme
[Termes IGN] voyageRésumé : (auteur) The abilities to predict tourist movements are critical to many urban applications, such as travel recommendations, targeted advertising, and infrastructure planning. Despite its importance, our understanding on the movement predictability of urban tourists and visitors is still limited, partially due to difficulties in accessing large scale mobility observations. In this study, we aim to bridge this gap by analyzing a nationwide mobile phone dataset. The dataset captures movement traces of a large number of international travelers who visited South Korea in 2018. By introducing two prediction models, one being Markov chain and the other with a recurrent neural network architecture, we assess how well travelers’ movements can be predicted under different model settings, and examine how predictability relates to travelers’ length of stay and activeness in travel patterns. Since travelers’ destination choices are quite diverse in South Korea, this enables us to further investigate the geographic variation of the models’ performance. Results show that the Markov chain model achieves an overall accuracy between 33.4% (@Acc1 metric) and 64.2% (@Acc5 metric), compared to 41.9% (@Acc1) and 67.7% (@Acc5) for the recurrent neural network model. The prediction capabilities of both models are largely unequal across individuals, with active travelers being more predictable in general. There is a notable geographic variation in the models’ performance, meaning that travelers’ movements are more predictable in some cities, but less in others. We believe this study represents a new effort in portraying the movement predictability of urban tourists and visitors. The analytical framework can be applied to assist tourism planning and service deployment in cities. Numéro de notice : A2022-085 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101753 Date de publication en ligne : 06/01/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101753 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99490
in Computers, Environment and Urban Systems > vol 92 (March 2022)[article]Novel model for predicting individuals’ movements in dynamic regions of interest / Xiaoqi Shen in GIScience and remote sensing, vol 59 n° 1 (2022)
![]()
[article]
Titre : Novel model for predicting individuals’ movements in dynamic regions of interest Type de document : Article/Communication Auteurs : Xiaoqi Shen, Auteur ; Wenzhong Shi, Auteur ; Pengfei Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 250 - 271 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] chaîne de Markov
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données spatiotemporelles
[Termes IGN] épidémie
[Termes IGN] extraction de données
[Termes IGN] migration humaine
[Termes IGN] mobilité territoriale
[Termes IGN] modèle de simulation
[Termes IGN] réseau social
[Termes IGN] zone d'activité économique
[Termes IGN] zone d'intérêtRésumé : (auteur) The increasing amount of geotagged social media data provides a possible resource for location prediction. However, existing location prediction methods rarely incorporate temporal changes in mobility patterns, which could lead to unreliable predictions. In particular, human mobility patterns have changed greatly in the COVID-19 era. We propose a novel model to predict individuals’ movements in dynamic regions of interest (ROIs), taking into account changes in activity areas and movement regularity. To address changes in the activity areas, we design a new updating strategy that can ensure the realistic extraction of an individual’s ROIs. Then, we develop an integration model for changes in the movement regularity based on two newly proposed prediction methods that consider both rapid and slow changes. The proposed integration model is evaluated based on five real-world social media datasets; three Weibo datasets related to COVID-19 collected in three Chinese cities, one Twitter dataset collected in New York and one dense GPS dataset. The results demonstrate that the proposed model can achieve better performances than state-of-the-art models, especially when mobility patterns change greatly. Combined with related pandemic data, this study will benefit pandemic prevention and control. Numéro de notice : A2022-131 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15481603.2022.2026637 Date de publication en ligne : 13/01/2022 En ligne : https://doi.org/10.1080/15481603.2022.2026637 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99719
in GIScience and remote sensing > vol 59 n° 1 (2022) . - pp 250 - 271[article]
Titre : Stability problems for stochastic models: Theory and applications Type de document : Monographie Auteurs : Alexander Zeifman, Éditeur scientifique ; Victor Korolev, Éditeur scientifique ; Alexander Sipin, Auteur Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2021 Importance : 370 p. Format : 17 x 25 cm ISBN/ISSN/EAN : 978-3-0365-0453-7 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Statistiques
[Termes IGN] chaîne de Markov
[Termes IGN] intégrale de Laplace
[Termes IGN] modèle stochastique
[Termes IGN] probabilités
[Termes IGN] programmation stochastique
[Termes IGN] variable aléatoireRésumé : (éditeur) The aim of this Special Issue of Mathematics is to commemorate the outstanding Russian mathematician Vladimir Zolotarev, whose 90th birthday will be celebrated on February 27th, 2021. The present Special Issue contains a collection of new papers by participants in sessions of the International Seminar on Stability Problems for Stochastic Models founded by Zolotarev. Along with research in probability distributions theory, limit theorems of probability theory, stochastic processes, mathematical statistics, and queuing theory, this collection contains papers dealing with applications of stochastic models in modeling of pension schemes, modeling of extreme precipitation, construction of statistical indicators of scientific publication importance, and other fields. Note de contenu : 1- A Generalized equilibrium transform with application to error boundsin the Renyi theorem with so support constraints
2- Approximations in performance analysis of a controllable queueing system with heterogeneous server
3- Accumulative pension schemes with various decrement factors
4- A priority queue with many customer types, correlated arrivals and changing priorities
5- Highly efficient robust and stable M-estimates of location
6- Local limit theorem for the multiple power series distributions
7- Multivariate scale-mixed stable distributions and related limit theorems
8- On convergence rates of some limits
9- Optimal filtering of Markov jump processes given observations with state-dependent noises: Exact solution and stable numerical schemes
10- On the fractional wave equation
11- Probability models and statistical tests for extreme precipitation based on generalized negative binomial distributions
12- Rates of convergence in Laplace’s integrals and sums and conditional central limit theorems
13- Sensitivity analysis and simulation of a multiserver queueing system with mixed tervice
time distribution
14- Statistical indicators of the scientific publications importance: A stochastic model and
critical look
15- Second order expansions for high-dimension low-sample-size data statistics in random setting
16- Two approaches to the construction of perturbation bounds for Ccontinuous-time Markov chains
17- The calculation of the density and distribution functions of strictly stable laws
18- Wavelet thresholding risk estimate for the model with random samples and correlated noiseNuméro de notice : 28620 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE Nature : Recueil / ouvrage collectif DOI : 10.3390/books978-3-0365-0453-7 En ligne : https://doi.org/10.3390/books978-3-0365-0453-7 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99519 Tourism land use simulation for regional tourism planning using POIs and cellular automata / Hong Shi in Transactions in GIS, Vol 24 n° 4 (August 2020)
![]()
[article]
Titre : Tourism land use simulation for regional tourism planning using POIs and cellular automata Type de document : Article/Communication Auteurs : Hong Shi, Auteur ; Xia Li, Auteur ; Zhenzhi Yang, Auteur Année de publication : 2020 Article en page(s) : 20 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] chaîne de Markov
[Termes IGN] Chine
[Termes IGN] distribution spatiale
[Termes IGN] modèle de simulation
[Termes IGN] montagne
[Termes IGN] planification
[Termes IGN] point d'intérêt
[Termes IGN] tourismeRésumé : (auteur) Previous studies on tourism land use primarily focus on the spatial distribution, and its related impacts on the environment. Here, we propose a future tourism land use simulation model for mountain vacations based on the cellular automata and Markov chain methods, having verified and simulated tourism land use in Emeishan city at a spatial resolution of 30 × 30 m using remote sensing and GIS. In addition, we introduced a tourism land use intensity index to study the spatial expansion mode of tourism land use. The results have confirmed the validity of the model and demonstrated its ability to simulate future tourism land use. The average growth rate of tourism land use from 2010 to 2015 is 33.36%, and tourism land use will rise from 1.26% of Emeishan city’s land area in 2015 to 2.95% in 2030. Tourism land use shows a spatial expansion pattern along channels from scenic spots to the urban area. The growth of tourism land use in the protected area has an increasing trend when there is no restriction on development, especially in the Eshan region. The simulation results can provide useful implications and guides for regional tourism planning and management. Numéro de notice : A2020-673 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12626 Date de publication en ligne : 23/05/2020 En ligne : https://doi.org/10.1111/tgis.12626 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96158
in Transactions in GIS > Vol 24 n° 4 (August 2020) . - 20 p.[article]Comparison of spatial modelling approaches to simulate urban growth: a case study on Udaipur city, India / Biswajit Mondal in Geocarto international, vol 35 n° 4 ([15/03/2020])
![]()
[article]
Titre : Comparison of spatial modelling approaches to simulate urban growth: a case study on Udaipur city, India Type de document : Article/Communication Auteurs : Biswajit Mondal, Auteur ; Suman Chakraborti, Auteur ; Dipendra Nath Das, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 411 - 433 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse diachronique
[Termes IGN] analyse multicritère
[Termes IGN] automate cellulaire
[Termes IGN] chaîne de Markov
[Termes IGN] croissance urbaine
[Termes IGN] étalement urbain
[Termes IGN] Inde
[Termes IGN] modèle de simulation
[Termes IGN] modélisation spatiale
[Termes IGN] pente
[Termes IGN] Perceptron multicouche
[Termes IGN] utilisation du solRésumé : (auteur) Assessment of past and future urban growth processes helps the decision makers to evaluate and formulate the policy documents. In an attempt to make such assessments, this study compares three commonly used urban growth models: Multicriteria Cellular Automata-Markov Chain (MCCA-MC), Multi-Layer Perception Markov Chain (MLP-MC), and the Slope, Land use, Exclusion, Urban Extent, Transportation and Hillshade (SLEUTH). This study has taken into account the land use and land cover data for the years, 1977, 1992, 2000, 2008, 2016 and prepared driving variables for urban growth. The KAPPA index of agreement indicates that the MCCA-MC, MLP-MC and SLEUTH models avoid errors by 94%, 93%, and 92% respectively. Models forecast that about 156.96 km2, 157.43 km2 and 142.43 km2 built-up areas will emerge through the process of urbanization by 2031 in the city of Udaipur. However, this assessment identified that all the models are embodied with their own advantages and disadvantages while serving specific purposes. While the MCCA-MC and MLP-MC provides a good account of the urban spread, the SLEUTH identifies the new isolated growth centres more accurately. Numéro de notice : A2020-100 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1520922 Date de publication en ligne : 03/01/2019 En ligne : https://doi.org/10.1080/10106049.2018.1520922 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94691
in Geocarto international > vol 35 n° 4 [15/03/2020] . - pp 411 - 433[article]Bayesian inversion of convolved hidden Markov models with applications in reservoir prediction / Torstein Fjeldstad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
PermalinkLand use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process / Biswajit Nath in ISPRS International journal of geo-information, vol 9 n° 2 (February 2020)
PermalinkSimulation of urban expansion via integrating artificial neural network with Markov chain – cellular automata / Tingting Xu in International journal of geographical information science IJGIS, vol 33 n° 10 (October 2019)
PermalinkExamining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change / Hao Wu in International journal of geographical information science IJGIS, Vol 33 n° 5-6 (May - June 2019)
PermalinkPermalinkPermalinkNouvelle méthode en cascade pour la classification hiérarchique multi-temporelle ou multi-capteur d'images satellitaires haute résolution / Ihsen Hedhli in Revue Française de Photogrammétrie et de Télédétection, n° 216 (février 2018)
PermalinkDeep learning based vehicular mobility models for intelligent transportation systems / Jian Zhang (2018)
PermalinkPermalinkA Markov chain model for simulating wood supply from any-aged forest management based on national forest inventory (NFI) data / Jari Vauhkonen in Forests, vol 8 n° 9 (September 2017)
Permalink