Descripteur
Termes IGN > sciences humaines et sociales > économie > macroéconomie > secteur secondaire > technologies spatiales > système spatial > secteur spatial > engin spatial > satellite artificiel > satellite d'observation de la Terre > GOCE
GOCESynonyme(s)Gravity Field and Ocean Circulation ExplorerVoir aussi |
Documents disponibles dans cette catégorie (16)



Etendre la recherche sur niveau(x) vers le bas
Titre : GOCE : g à l'échelle de la Terre Type de document : Chapitre/Contribution Auteurs : Isabelle Panet , Auteur
Editeur : Les Ulis : EDP Sciences Année de publication : 2016 Importance : pp 361 - 377 Note générale : in Guide de données astronomiques 2016 publié chez EDP sciences par l'IMCCE Langues : Français (fre) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GOCE
[Termes IGN] GOCE
[Termes IGN] pesanteur terrestreNuméro de notice : H2016-011 Affiliation des auteurs : LASTIG LAREG (2012-mi2018) Thématique : POSITIONNEMENT Nature : Chapître / contribution nature-HAL : ChOuvrScient DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91902 Monitoring GOCE gradiometer calibration parameters using accelerometer and star sensor data: methodology and first results / C. Siemes in Journal of geodesy, vol 86 n° 8 (August 2012)
![]()
[article]
Titre : Monitoring GOCE gradiometer calibration parameters using accelerometer and star sensor data: methodology and first results Type de document : Article/Communication Auteurs : C. Siemes, Auteur ; Roger Haagmans, Auteur ; M. Kern, Auteur ; et al., Auteur Année de publication : 2012 Article en page(s) : pp 629 - 645 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GOCE
[Termes IGN] étalonnage d'instrument
[Termes IGN] GOCE
[Termes IGN] gradient de gravitation
[Termes IGN] gradiomètre
[Termes IGN] série temporelleRésumé : (Auteur) The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite, launched on 17 March 2009, is designed to measure the Earth’s mean gravity field with unprecedented accuracy at spatial resolutions down to 100 km. The accurate calibration of the gravity gradiometer on-board GOCE is of utmost importance for achieving the mission goals. ESA’s baseline method for the calibration uses star sensor and accelerometer data of a dedicated calibration procedure, which is executed every 2 months. In this paper, we describe a method for monitoring the evolution of calibration parameter during that time. The method works with star sensor and accelerometer data and does not require gravity field models, which distinguishes it from other existing methods. We present time series of calibration parameters estimated from GOCE data from 1 November 2009 to 17 May 2010. The time series confirm drifts in the calibration parameters that are present in the results of other methods, including ESA’s baseline method. Although these drifts are very small, they degrade the gravity gradients, leading to the conclusion that the calibration parameters of the ESA’s baseline method need to be linearly interpolated. Further, we find a correction of -36 * 10-6 for one calibration parameter (in-line differential scale factor of the cross-track gradiometer arm), which improves the gravity gradient performance. The results are validated by investigating the trace of the calibrated gravity gradients and comparing calibrated gravity gradients with reference gradients computed along the GOCE orbit using the ITG-Grace-2010s gravity field model. Numéro de notice : A2012-376 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-012-0545-8 Date de publication en ligne : 22/02/2012 En ligne : https://doi.org/10.1007/s00190-012-0545-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31822
in Journal of geodesy > vol 86 n° 8 (August 2012) . - pp 629 - 645[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 266-2012081 RAB Revue Centre de documentation En réserve 3L Disponible GOCE gravitational gradients along the orbit / Johannes Bouman in Journal of geodesy, vol 85 n° 11 (November /2011)
![]()
[article]
Titre : GOCE gravitational gradients along the orbit Type de document : Article/Communication Auteurs : Johannes Bouman, Auteur ; S. Fiorot, Auteur ; M. Fuchs, Auteur ; Thomas Gruber, Auteur Année de publication : 2011 Article en page(s) : pp 791 - 805 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] GOCE
[Termes IGN] gradient de gravitationRésumé : (Auteur) GOCE is ESA’s gravity field mission and the first satellite ever that measures gravitational gradients in space, that is, the second spatial derivatives of the Earth’s gravitational potential. The goal is to determine the Earth’s mean gravitational field with unprecedented accuracy at spatial resolutions down to 100 km. GOCE carries a gravity gradiometer that allows deriving the gravitational gradients with very high precision to achieve this goal. There are two types of GOCE Level 2 gravitational gradients (GGs) along the orbit: the gravitational gradients in the gradiometer reference frame (GRF) and the gravitational gradients in the local north oriented frame (LNOF) derived from the GGs in the GRF by point-wise rotation. Because the V XX , V YY , V ZZ and V XZ are much more accurate than V XY and V YZ , and because the error of the accurate GGs increases for low frequencies, the rotation requires that part of the measured GG signal is replaced by model signal. However, the actual quality of the gradients in GRF and LNOF needs to be assessed. We analysed the outliers in the GGs, validated the GGs in the GRF using independent gravity field information and compared their assessed error with the requirements. In addition, we compared the GGs in the LNOF with state-of-the-art global gravity field models and determined the model contribution to the rotated GGs. We found that the percentage of detected outliers is below 0.1% for all GGs, and external gravity data confirm that the GG scale factors do not differ from one down to the 10-3 level. Furthermore, we found that the error of V XX and V YY is approximately at the level of the requirement on the gravitational gradient trace, whereas the V ZZ error is a factor of 2–3 above the requirement for higher frequencies. We show that the model contribution in the rotated GGs is 2–35% dependent on the gravitational gradient. Finally, we found that GOCE gravitational gradients and gradients derived from EIGEN-5C and EGM2008 are consistent over the oceans, but that over the continents the consistency may be less, especially in areas with poor terrestrial gravity data. All in all, our analyses show that the quality of the GOCE gravitational gradients is good and that with this type of data valuable new gravity field information is obtained. Numéro de notice : A2011-468 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-011-0464-0 Date de publication en ligne : 18/10/2011 En ligne : https://doi.org/10.1007/s00190-011-0464-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31362
in Journal of geodesy > vol 85 n° 11 (November /2011) . - pp 791 - 805[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 266-2011111 RAB Revue Centre de documentation En réserve 3L Disponible GPS-derived orbits for the GOCE satellite / Heike Bock in Journal of geodesy, vol 85 n° 11 (November /2011)
![]()
[article]
Titre : GPS-derived orbits for the GOCE satellite Type de document : Article/Communication Auteurs : Heike Bock, Auteur ; Adrian Jäggi, Auteur ; U. Meyer, Auteur ; P. Visser, Auteur ; et al., Auteur Année de publication : 2011 Article en page(s) : pp 807 - 818 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] antenne GPS
[Termes IGN] GOCE
[Termes IGN] orbite basse
[Termes IGN] orbitographie
[Termes IGN] orbitographie par GNSS
[Termes IGN] positionnement cinématique
[Termes IGN] série temporelle
[Termes IGN] télémétrie laser sur satelliteRésumé : (Auteur) The first ESA (European Space Agency) Earth explorer core mission GOCE (Gravity field and steady-state Ocean Circulation Explorer) was launched on 17 March 2009 into a sun-synchronous dusk–dawn orbit with an exceptionally low initial altitude of about 280 km. The onboard 12-channel dual-frequency GPS (Global Positioning System) receiver delivers 1 Hz data, which provides the basis for precise orbit determination (POD) for such a very low orbiting satellite. As part of the European GOCE Gravity Consortium the Astronomical Institute of the University of Bern and the Department of Earth Observation and Space Systems are responsible for the orbit determination of the GOCE satellite within the GOCE High-level Processing Facility. Both quick-look (rapid) and very precise orbit solutions are produced with typical latencies of 1 day and 2 weeks, respectively. This article summarizes the special characteristics of the GOCE GPS data, presents POD results for about 2 months of data, and shows that both latency and accuracy requirements are met. Satellite Laser Ranging validation shows that an accuracy of 4 and 7 cm is achieved for the reduced-dynamic and kinematic Rapid Science Orbit solutions, respectively. The validation of the reduced-dynamic and kinematic Precise Science Orbit solutions is at a level of about 2 cm. Numéro de notice : A2011-469 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-011-0484-9 Date de publication en ligne : 26/05/2011 En ligne : https://doi.org/10.1007/s00190-011-0484-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31363
in Journal of geodesy > vol 85 n° 11 (November /2011) . - pp 807 - 818[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 266-2011111 RAB Revue Centre de documentation En réserve 3L Disponible Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission / R. Floberghagen in Journal of geodesy, vol 85 n° 11 (November /2011)
![]()
[article]
Titre : Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission Type de document : Article/Communication Auteurs : R. Floberghagen, Auteur ; M. Fehringer, Auteur ; D. Lamarre, Auteur ; D. Muzi, Auteur ; et al., Auteur Année de publication : 2011 Article en page(s) : pp 749 - 758 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] circulation océanique
[Termes IGN] données GOCE
[Termes IGN] géoïde terrestre
[Termes IGN] GOCE
[Termes IGN] gradient de gravitation
[Termes IGN] gradiomètre
[Termes IGN] gravimétrie spatialeRésumé : (Auteur) The European Space Agency’s Gravity field and steady-state ocean circulation explorer mission (GOCE) was launched on 17 March 2009. As the first of the Earth Explorer family of satellites within the Agency’s Living Planet Programme, it is aiming at a better understanding of the Earth system. The mission objective of GOCE is the determination of the Earth’s gravity field and geoid with high accuracy and maximum spatial resolution. The geoid, combined with the de facto mean ocean surface derived from twenty-odd years of satellite radar altimetry, yields the global dynamic ocean topography. It serves ocean circulation and ocean transport studies and sea level research. GOCE geoid heights allow the conversion of global positioning system (GPS) heights to high precision heights above sea level. Gravity anomalies and also gravity gradients from GOCE are used for gravity-to-density inversion and in particular for studies of the Earth’s lithosphere and upper mantle. GOCE is the first-ever satellite to carry a gravitational gradiometer, and in order to achieve its challenging mission objectives the satellite embarks a number of world-first technologies. In essence the spacecraft together with its sensors can be regarded as a spaceborne gravimeter. In this work, we describe the mission and the way it is operated and exploited in order to make available the best-possible measurements of the Earth gravity field. The main lessons learned from the first 19 months in orbit are also provided, in as far as they affect the quality of the science data products and therefore are of specific interest for GOCE data users. Numéro de notice : A2011-467 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-011-0498-3 Date de publication en ligne : 18/10/2011 En ligne : https://doi.org/10.1007/s00190-011-0498-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31361
in Journal of geodesy > vol 85 n° 11 (November /2011) . - pp 749 - 758[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 266-2011111 RAB Revue Centre de documentation En réserve 3L Disponible vol 85 n° 11 - November /2011 - GOCE - The gravity and steady state-ocean circulation explorer (Bulletin de Journal of geodesy) / International association of geodesy
PermalinkOptima multi-step collocation: application to the space-wise approach for GOCE data analysis / M. Reguzzoni in Journal of geodesy, vol 83 n° 1 (January 2009)
PermalinkVariations in the accuracy of gravity recovery due to ground track variability: GRACE, CHAMP, and GOCE / J. Klokocnik in Journal of geodesy, vol 82 n° 12 (December 2008)
PermalinkGOCE : obtaining a portrait of Earth's most intimate features / M. Drinkwater in ESA bulletin, n° 133 (February 2008)
PermalinkGOCE's measurements of the gravity field and beyond / R. Floberghaben in ESA bulletin, n° 133 (February 2008)
PermalinkPseudo-stochastic orbit modeling of low earth satellites using the Global Positioning System / Adrian Jäggi (2007)
PermalinkJournées 2005, systèmes de référence spatio-temporels, Warsaw, 19-21 September 2005 / Alexander Brzezinski (2006)
PermalinkDie Satellitengradiometriemission GOCE - Theorie, technische Realisierung und wissenschaftliche Nutzung / J. Muller (2001)
PermalinkPermalinkPermalink