Descripteur
Termes IGN > sciences humaines et sociales > économie > macroéconomie > secteur secondaire > technologies spatiales > système spatial > secteur spatial > engin spatial > satellite artificiel > satellite d'observation de la Terre > GRACE
GRACESynonyme(s)Gravity recovery and climate experimentVoir aussi |
Documents disponibles dans cette catégorie (19)



Etendre la recherche sur niveau(x) vers le bas
Efficient variance component estimation for large-scale least-squares problems in satellite geodesy / Yufeng Nie in Journal of geodesy, vol 96 n° 2 (February 2022)
![]()
[article]
Titre : Efficient variance component estimation for large-scale least-squares problems in satellite geodesy Type de document : Article/Communication Auteurs : Yufeng Nie, Auteur ; Yunzhong Shen, Auteur ; Roland Pail, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 13 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] analyse de variance
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] estimation statistique
[Termes IGN] GRACE
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] méthode des moindres carrés
[Termes IGN] modèle stochastiqueRésumé : (auteur) Efficient Variance Component Estimation (VCE) is significant to optimal data combination in large-scale least-squares problems as those encountered in satellite geodesy, where millions of observations are jointly processed to estimate a huge number of unknown parameters. In this paper, an efficient VCE algorithm with rigorous trace calculation is proposed based on the local–global parameters partition scheme in satellite geodesy, which is directly applicable to both the simplified yet common case where local parameters are unique to a single observation group and the generalized case where local parameters are shared by different groups of observations. Moreover, the Monte-Carlo VCE (MCVCE) algorithm, based on the stochastic trace estimation technique, is further extended in this paper to the generalized case. Two numerical simulation cases are investigated for gravity field model recovery to evaluate both the accuracy and efficiency of the proposed algorithm and the extended MCVCE algorithm in terms of trace calculation. Compared to the conventional algorithm, the relative trace calculation errors in the efficient algorithm are all negligibly below 10–7%, while in the MCVCE algorithm they can vary from 0.6 to 37% depending on the number of adopted random vector realizations and the specific applications. The efficient algorithm can achieve computational time reduction rates above 96% compared to the conventional algorithm for all gravity field model sizes considered in the paper. In the MCVCE algorithm, however, the time reduction rates can change from 61 to 99% for different implementations. Numéro de notice : A2022-186 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01599-9 Date de publication en ligne : 16/02/2022 En ligne : https://doi.org/10.1007/s00190-022-01599-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99907
in Journal of geodesy > vol 96 n° 2 (February 2022) . - n° 13[article]Comparison of precise orbit determination methods of zero-difference kinematic, dynamic and reduced-dynamic of GRACE-A satellite using SHORDE software / Kai Li in Journal of applied geodesy, vol 11 n° 3 (September 2017)
![]()
[article]
Titre : Comparison of precise orbit determination methods of zero-difference kinematic, dynamic and reduced-dynamic of GRACE-A satellite using SHORDE software Type de document : Article/Communication Auteurs : Kai Li, Auteur ; Xuhua Zhou, Auteur ; Nannan Guo, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 157 - 166 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Technologies spatiales
[Termes IGN] coordonnées GPS
[Termes IGN] GRACE
[Termes IGN] mesurage de phase
[Termes IGN] orbite basse
[Termes IGN] orbitographieRésumé : (Auteur) Zero-difference kinematic, dynamic and reduced-dynamic precise orbit determination (POD) are three methods to obtain the precise orbits of Low Earth Orbit satellites (LEOs) by using the on-board GPS observations. Comparing the differences between those methods have great significance to establish the mathematical model and is usefull for us to select a suitable method to determine the orbit of the satellite. Based on the zero-difference GPS carrier-phase measurements, Shanghai Astronomical Observatory (SHAO) has improved the early version of SHORDE and then developed it as an integrated software system, which can perform the POD of LEOs by using the above three methods. In order to introduce the function of the software, we take the Gravity Recovery And Climate Experiment (GRACE) on-board GPS observations in January 2008 as example, then we compute the corresponding orbits of GRACE by using the SHORDE software. In order to evaluate the accuracy, we compare the orbits with the precise orbits provided by Jet Propulsion Laboratory (JPL). The results show that: (1) If we use the dynamic POD method, and the force models are used to represent the non-conservative forces, the average accuracy of the GRACE orbit is 2.40cm, 3.91cm, 2.34cm and 5.17cm in radial (R), along-track (T), cross-track (N) and 3D directions respectively; If we use the accelerometer observation instead of non-conservative perturbation model, the average accuracy of the orbit is 1.82cm, 2.51cm, 3.48cm and 4.68cm in R, T, N and 3D directions respectively. The result shows that if we use accelerometer observation instead of the non-conservative perturbation model, the accuracy of orbit is better. (2) When we use the reduced-dynamic POD method to get the orbits, the average accuracy of the orbit is 0.80cm, 1.36cm, 2.38cm and 2.87cm in R, T, N and 3D directions respectively. This method is carried out by setting up the pseudo-stochastic pulses to absorb the errors of atmospheric drag and other perturbations. (3) If we use the kinematic POD method, the accuracy of the GRACE orbit is 2.92cm, 2.48cm, 2.76cm and 4.75cm in R, T, N and 3D directions respectively. In conclusion, it can be seen that the POD of GRACE satellite is practicable by using different strategies and methods. The orbit solution is well and stable, they all can obtain the GRACE orbits with centimeter-level precision. Numéro de notice : A2017-570 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jag-2017-0004 En ligne : https://doi.org/10.1515/jag-2017-0004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86690
in Journal of applied geodesy > vol 11 n° 3 (September 2017) . - pp 157 - 166[article]Télédétection pour l'observation des surfaces continentales, Volume 2. Observation des surfaces continentales par télédétection micro-onde / Nicolas Baghdadi (2017)
Titre de série : Télédétection pour l'observation des surfaces continentales, Volume 2 Titre : Observation des surfaces continentales par télédétection micro-onde : techniques et méthodes Type de document : Monographie Auteurs : Nicolas Baghdadi, Éditeur scientifique ; Mehrez Zribi, Éditeur scientifique Editeur : Londres : ISTE Editions Année de publication : 2017 Collection : Collection système Terre - Environnement Importance : 420 p. Format : 15 x 23 cm ISBN/ISSN/EAN : 978-1-78405-157-0 Note générale : Bibliographie, glossaire Langues : Français (fre) Descripteur : [Vedettes matières IGN] Télédétection
[Termes IGN] altimétrie satellitaire par radar
[Termes IGN] assimilation des données
[Termes IGN] données GRACE
[Termes IGN] filtre de Kalman
[Termes IGN] GRACE
[Termes IGN] image radar moirée
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] micro-onde
[Termes IGN] modèle d'erreur
[Termes IGN] modèle numérique de terrain
[Termes IGN] polarimétrie radar
[Termes IGN] réflectométrie par GNSS
[Termes IGN] télédétection en hyperfréquence
[Termes IGN] tomographie radar
[Termes IGN] transfert radiatifIndex. décimale : 35.22 Télédétection en hyperfréquence - Traitement d'image radar Résumé : (Editeur) Second volume d'une série de six ouvrages, ce livre présente les principes physiques et techniques de différents types de capteurs micro-ondes : les radars à synthèse d’ouverture (RSO), l’altimétrie satellitaire radar, les micro-ondes passives, la gravimétrie spatiale, la réflectométrie GNSS (Global Navigation Satellite System). L’ouvrage aborde également la reconstruction des modèles numériques de terrain à partir de mesures RSO et propose une description des méthodes d’assimilation des données spatiales dans les modèles. Note de contenu : Introduction
1. Imagerie radar à synthèse d’ouverture
2. Imagerie SAR à modes de diversité cohérents : polarimétrie, interférométrie et tomographie SAR
3. Les principes de la reconstruction d’un MNT à partir d’images RSO
4. Principes de l’altimétrie satellitaire radar pour les applications sur les eaux continentales
5. Micro-ondes passives à basses fréquences : principes, transfert radiatif, physique de la mesure
6. La mission de gravimétrie spatiale GRACE : instruments et principe de fonctionnement
7. Le système satellite de navigation global réfléchi (GNSS-R) : de la théorie à la pratique
8. Assimilation de données spatialesNuméro de notice : 22753B Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Recueil / ouvrage collectif Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91695 Voir aussi
- Télédétection pour l'observation des surfaces continentales, Volume 1. Observation des surfaces continentales par télédétection optique / Nicolas Baghdadi (2017)
- Télédétection pour l'observation des surfaces continentales, Volume 4. Observation des surfaces continentales par télédétection 2 / Nicolas Baghdadi (2017)
- Télédétection pour l'observation des surfaces continentales, Volume 5. Observation des surfaces continentales par télédétection 3 / Nicolas Baghdadi (2017)
- Télédétection pour l'observation des surfaces continentales, Volume 3. Observation des surfaces continentales par télédétection 1 / Nicolas Baghdadi (2017)
Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22753-01B 35.22 Livre Centre de documentation Télédétection Disponible Intersatellite laser ranging instrument for the GRACE follow-on mission / B. Sheard in Journal of geodesy, vol 86 n° 12 (December 2012)
![]()
[article]
Titre : Intersatellite laser ranging instrument for the GRACE follow-on mission Type de document : Article/Communication Auteurs : B. Sheard, Auteur ; Gerhard Heinzel, Auteur ; K. Danzmann, Auteur ; et al., Auteur Année de publication : 2012 Article en page(s) : pp 1083 - 1095 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] GRACE
[Termes IGN] mission spatiale
[Termes IGN] poursuite de satellite
[Termes IGN] surveillanceRésumé : (Auteur) The Gravity Recovery and Climate Experiment (GRACE) has demonstrated that low–low satellite-to-satellite tracking enables monitoring the time variations of the Earth’s gravity field on a global scale, in particular those caused by mass-transport within the hydrosphere. Due to the importance of long-term continued monitoring of the variations of the Earth’s gravitational field and the limited lifetime of GRACE, a follow-on mission is currently planned to be launched in 2017. In order to minimise risk and the time to launch, the follow-on mission will be basically a rebuild of GRACE with microwave ranging as the primary instrument for measuring changes of the intersatellite distance. Laser interferometry has been proposed as a method to achieve improved ranging precision for future GRACE-like missions and is therefore foreseen to be included as demonstrator experiment in the follow-on mission now under development. This paper presents the top-level architecture of an interferometric laser ranging system designed to demonstrate the technology which can also operate in parallel with the microwave ranging system of the GRACE follow-on mission. Numéro de notice : A2012-649 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-012-0566-3 Date de publication en ligne : 08/05/2012 En ligne : https://doi.org/10.1007/s00190-012-0566-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32095
in Journal of geodesy > vol 86 n° 12 (December 2012) . - pp 1083 - 1095[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 266-2012121 RAB Revue Centre de documentation En réserve 3L Disponible Identification and modelling of sea level change contributors on GRACE satellite gravity data and their applications to climate monitoring / Bert Wouters (2010)
Titre : Identification and modelling of sea level change contributors on GRACE satellite gravity data and their applications to climate monitoring Type de document : Monographie Auteurs : Bert Wouters, Auteur Editeur : Delft : Netherlands Geodetic Commission NGC Année de publication : 2010 Collection : Netherlands Geodetic Commission Publications on Geodesy, ISSN 0165-1706 num. 73 Importance : 182 p. Format : 17 x 24 cm ISBN/ISSN/EAN : 978-90-6132-316-7 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] changement climatique
[Termes IGN] GRACE
[Termes IGN] Groenland
[Termes IGN] niveau moyen des mers
[Termes IGN] surveillance météorologiqueRésumé : (Auteur) Recently, the Intergovernmental Panel on Climate Change named sea level rise as one of the major challenges of the 21st century. Given the high population density of coastal regions, a small rise of the sea level will have a substantial impact on human society. However, the Earth's climate system is a complex matter arid model predictions of the sea level changes likely to be expected in the coming century currently show a wide spread. Clearly, a thorough understanding of present-day climate variability is imperative narrow this uncertainty band, which on its turn depends on the availability of accurate and detailed observations of our climate.
A valuable contribution to the expanding array of satellites dedicated to observations of the Earth System, are the Gravity Recovery and Climate Experiment (GRACE) satellites, launched in March 2002. This mission is dedicated to observing changes of the Earth's gravity field at (sub-)monthly intervals. At time-scales of a few years, these changes are mostly related to the redistribution of water on the Earth's surface. For example, a thinning of the Greenland ice sheet will manifest itself as a local negative anomaly in the gravity field, whereas the water that is added to the ocean will show up as a predominantly positive anomaly. The main objective of this dissertation is to study how the GRACE observations can be used to improve our knowledge of changes in the Earth's climate systems, and how the data should be processed in order to optimize quality and spatial resolution.
The GRACE data provided by the science teams consist of spherical harmonic coefficients. They show particular correlations between coefficients of identical order and even and odd degree, respectively, due to the mission's architecture and deficiencies in the background models used throughout the processing of the satellite measurements. These noise artifacts show up as striping patterns along the north-south direction in the monthly maps of surface mass changes, hampering the interpretation of the observations. In this dissertation, it is shown that empirical orthogonal function (EOF) analysis is an effective method to reduce the noise in the GRACE data. This statistical tool separates a data set into a number of characteristic (eigen) modes of variance, in combination with an index describing the amplitude of the mode in time, i.e. the principal components. The EOF analysis can be applied to the maps of surface mass changes, in which case the first few modes are related to the annual and long-term trend components. The fourth mode appears to be related to the El Nino/Southern Oscillation. The noise signals arc absorbed by the higher modes, which makes the leading modes largely stripe-free up to a resolution of approximately 400 kilometers.
A further reduction of the noise can be obtained by applying the EOF de-composition directly to the spherical harmonic coefficients, after grouping them following order. The principal components arc compared to a random process and, if the two arc statistically sufficiently alike, not used in the further data processing. A series of tests shows that this approach reduces the noise by 60-80 %, compared the non-filtered case. An important feature of this filter is that it does not alter the shape of the signal and causes less reduction its power, compared to other commonly used filter methods based on the approach of Swenson and Walir (2006).
Using the filtered data, changes in the mass content of the ocean have been studied. The GRACE satellites are capable of capturing seasonal changes in the ocean mass content accurately on a global scale. In combination with sea surface height observations made by satellite altimeter, the steric sea level component (related to changes in the heat and salinity content of the ocean) can be separated as well. A comparison with reference data sets shows that locally a coherent signal can be obtained at a (Gaussian) resolution of approximately 500 km over the oceans. These steric changes dominate the sea level in most of the oceans, but strong ocean bottom pressure fluctuations are observed in several areas, e.g., the Gulf of Carpentaria and the Gulf of Thailand. Estimates of long-term changes in the ocean mass and heat content arc a more challenging problem, and require a longer observation period and a better modeling of mass redistribution in the solid earth and the position of the center of mass of the Earth, two components to which the GRACE observations arc particularly sensitive.
It is found that the global spherical harmonic coefficients contain more information than previously acknowledged. This is demonstrated by using the GRACE data to obtain a picture of the mass balance of the Greenland ice sheet at a regional scale. From the research in this dissertations, it shows that Greenland lost 179 Gigaton each year on average between 2003 and 2008, causing a global mean rise of sea level by 0.5 mm/yr. Comparing the trend in the first few to that in the last few years shows a speed-up of the thinning, which corroborates the picture of an increasingly negative mass balance of the ice sheet since the mid 1990's as indicated by, for example, regional climate models and radar altimetry observations. The majority of the losses occur in the coastal regions in the southeastern sector. The northwestern coastal zones were approximately in balance up to the summer of 2005, but show strong negative trends since. Large year-to-year differences in the mass balance of the ice sheet are observed, with a record loss in the warm summer of 2007. A strong correlation between the GRACE observations in summer and satellite measurements of surface melt area extent is demonstrated. Also, good agreement is found with regional climate modeling data, highlighting the potential of the GRACE observations to validate and improve the numerical models.
A mass redistribution on land will cause a change in the shape of the global geoid. Sea level, when not acted upon by any other forcings, will adjust to this equipotential surface. Therefore, when water is exchanged between ocean and continents (and changes due to ocean dynamics are disregarded), sea level will not rise or fall uniformly, which is known as the so-called self-gravitation effect. Due to their global coverage, the GRACE observations of continental mass distribution are an excellent input to model this phenomenon. Strongest deviations from a uniform distribution are found off the coast of Alaska and in the Bay of Bengal, where differences of more than 100% are found on seasonal time-scales. In these regions, inclusion of the self-gravitation effect into numerical ocean model would result in a better agreement between modeled and observational data.
From the work presented in this dissertation, it shows that the GRACE satellites are an invaluable tool for the monitoring of our climate system. Statistically filtering of the data reveals a wealth of information. In combination with altimetry observations, the GRACE data allows the separation of mass and steric components in sea level on seasonal time scales. Given a longer observational period and an improved understanding of the processes in the solid earth, expected to come available soon thanks to ESA's GOCE missions, long-term trends in these components will be identifiable. Furthermore, the GRACE mission allows us to put a constraint on the contribution of the Greenland ice sheet to present-day sea level rise. The technique to recover these changes can easily be expanded to other regions, such as the Antarctic or the Alaskan glacier fields. The synergy between GRACE data, future missions such as Cryosat-2, which will map height variations of the cryosphere with an unprecedented accuracy, and regional climate models, uncovering the physical processes behind the observed changes, promises a leap forward in our understanding of the mass balance of the ice sheets. Finally, com-paring the modeled deviations from uniform sea level changes with in-situ data such as from tide-gauges, may lead to a direct validation of the aforementioned self-gravitation theory with present-day data.Numéro de notice : 10335 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Monographie Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=62396 Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 10335-01 30.83 Livre Centre de documentation Géodésie Disponible Geocenter variations derived from GPS tracking of the GRACE satellites / Z. Kang in Journal of geodesy, vol 83 n° 10 (October 2009)
PermalinkA study reference frame consistency in recent Earth gravitational models / C. Kotsakis in Journal of geodesy, vol 83 n° 1 (January 2009)
PermalinkVariations in the accuracy of gravity recovery due to ground track variability: GRACE, CHAMP, and GOCE / J. Klokocnik in Journal of geodesy, vol 82 n° 12 (December 2008)
PermalinkLength-of-day and space-geodetic determination of the Earth's variable gravity field / G. Bourda in Journal of geodesy, vol 82 n° 4-5 (April - May 2008)
PermalinkSatellite evidence of the melting Greenland's ice cap: Ice losses now far surpass ice gains / J. Triglav in Geoinformatics, vol 10 n° 4 (01/06/2007)
PermalinkPseudo-stochastic orbit modeling of low earth satellites using the Global Positioning System / Adrian Jäggi (2007)
PermalinkWavelet modeling of regional and temporal variations of the Earth’s gravitational potential observed by GRACE / M.J. Fengler in Journal of geodesy, vol 81 n° 1 (January 2007)
PermalinkA simulation study of the errors of omission and commission for GRACE RL01 gravity fields / B. Gunter in Journal of geodesy, vol 80 n° 7 (October 2006)
PermalinkPrecise orbit determination for the GRACE mission using only GPS data / Z. Kang in Journal of geodesy, vol 80 n° 6 (September 2006)
PermalinkJournées 2005, systèmes de référence spatio-temporels, Warsaw, 19-21 September 2005 / Alexander Brzezinski (2006)
PermalinkPermalinkInstrument of GRACE: GPS augments gravity measurements / C. Dunn in GPS world, vol 14 n° 2 (February 2003)
PermalinkPermalinkPermalink