Descripteur
Termes descripteurs IGN > 1- Candidats > champ aléatoire de Markov
champ aléatoire de MarkovSynonyme(s)Mrf |



Etendre la recherche sur niveau(x) vers le bas
A fractal projection and Markovian segmentation-based approach for multimodal change detection / Max Mignotte in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
![]()
[article]
Titre : A fractal projection and Markovian segmentation-based approach for multimodal change detection Type de document : Article/Communication Auteurs : Max Mignotte, Auteur Année de publication : 2020 Article en page(s) : pp 8046 - 8058 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] champ aléatoire de Markov
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] décomposition d'image
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] géométrie fractale
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] projection
[Termes descripteurs IGN] segmentation d'imageRésumé : (auteur) Change detection in heterogeneous bitemporal satellite images has become an emerging, important, and challenging research topic in remote sensing for rapid damage assessment. In this article, we explore a new parametric mapping strategy based on a modified geometric fractal decomposition and a contractive mapping approach allowing us to project the before image on any after imaging modality type. This projection exploits the fact that any satellite image data can be approximatively encoded in terms of spatial self-similarities at different scales and this property remains quite invariant to a given imaging modality type. Once the projection is performed and that a pixelwise difference map between the two images (presented in the same imaging modality) is then binarized in the unsupervised Bayesian framework. At this stage, we will test several parameter estimation procedures combined with several segmentation strategies based on different Bayesian cost functions. The experiments for change detection, with real images showing different multimodalities and changed events, indicate that this new fractal-based projection method, which is entirely based on a series of structural and spatial information, is an interesting alternative to classical regression-based projection methods (based only on luminance transformation). Besides, the experiments also show that the difference map, resulting in this novel projection strategy, is also particularly amenable for an unsupervised Markovian binarization approach. Numéro de notice : A2020-682 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2986239 date de publication en ligne : 30/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2986239 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96207
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 8046 - 8058[article]Region level SAR image classification using deep features and spatial constraints / Anjun Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 163 (May 2020)
![]()
[article]
Titre : Region level SAR image classification using deep features and spatial constraints Type de document : Article/Communication Auteurs : Anjun Zhang, Auteur ; Xuezhi Yang, Auteur ; Shuai Fang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 36-48 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] carte de confiance
[Termes descripteurs IGN] champ aléatoire de Markov
[Termes descripteurs IGN] chatoiement
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] lissage de données
[Termes descripteurs IGN] modélisation spatiale
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] superpixelRésumé : (auteur) The region-level SAR image classification algorithms which combine CNN (Convolutional Neural Networks) with super-pixel have been proposed to enhance the classification accuracy compared with the pixel-level algorithms. However, the spatial constraints between the super-pixel regions are not considered, which may limit the performance of these algorithms. To address this problem, an RCC-MRF (RCC, Region Category Confidence-degree) and CNN based region-level SAR image classification algorithm which explores the deep features extracted by CNN and the spatial constraints between super-pixel regions is proposed in this paper. The initial labels of super-pixel regions are obtained using a voting strategy based on the predicted labels CNN. The unary energy function of RCC-MRF is designed to find the category that a region most probably belongs to by using the RCC term which is constructed based on the probability distributions over all categories of pixels predicted by CNN. The binary energy function of RCC-MRF explores the spatial constraints between the adjacent super-pixel regions. In our proposed algorithm, the pixel-level misclassifications can be reduced by the smoothing within regions and the region-level misclassifications will be rectified by minimizing the energy function of RCC-MRF. Experiments have been done on simulated and real SAR images to evaluate the performance of the proposed algorithm. The experimental results demonstrate that the proposed algorithm notably outperforms the other CNN-based region-level SAR image classification algorithms. Numéro de notice : A2020-136 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.03.001 date de publication en ligne : 07/03/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.03.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94752
in ISPRS Journal of photogrammetry and remote sensing > vol 163 (May 2020) . - pp 36-48[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020051 SL Revue Centre de documentation Revues en salle Disponible 081-2020053 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Addressing overfitting on point cloud classification using Atrous XCRF / Hasan Asy’ari Arief in ISPRS Journal of photogrammetry and remote sensing, vol 155 (September 2019)
![]()
[article]
Titre : Addressing overfitting on point cloud classification using Atrous XCRF Type de document : Article/Communication Auteurs : Hasan Asy’ari Arief, Auteur ; Ulf Geir Indahl, Auteur ; Geir-Harald Strand, Auteur ; Håvard Tveite, Auteur Année de publication : 2019 Article en page(s) : pp 90 - 101 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] champ aléatoire conditionnel
[Termes descripteurs IGN] classification automatique
[Termes descripteurs IGN] réseau de neurones profond
[Termes descripteurs IGN] réseau neuronal convolutif
[Termes descripteurs IGN] semis de pointsRésumé : (Auteur) Advances in techniques for automated classification of point cloud data introduce great opportunities for many new and existing applications. However, with a limited number of labelled points, automated classification by a machine learning model is prone to overfitting and poor generalization. The present paper addresses this problem by inducing controlled noise (on a trained model) generated by invoking conditional random field similarity penalties using nearby features. The method is called Atrous XCRF and works by forcing a trained model to respect the similarity penalties provided by unlabeled data. In a benchmark study carried out using the ISPRS 3D labeling dataset, our technique achieves 85.0% in term of overall accuracy, and 71.1% in term of F1 score. The result is on par with the current best model for the benchmark dataset and has the highest value in term of F1 score. Additionally, transfer learning using the Bergen 2018 dataset, without model retraining, was also performed. Even though our proposal provides a consistent 3% improvement in term of accuracy, more work still needs to be done to alleviate the generalization problem on the domain adaptation and the transfer learning field. Numéro de notice : A2019-312 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2019.07.002 date de publication en ligne : 11/07/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.07.002 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93337
in ISPRS Journal of photogrammetry and remote sensing > vol 155 (September 2019) . - pp 90 - 101[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019091 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019093 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Structural segmentation and classification of mobile laser scanning point clouds with large variations in point density / Yuan Li in ISPRS Journal of photogrammetry and remote sensing, vol 153 (July 2019)
![]()
[article]
Titre : Structural segmentation and classification of mobile laser scanning point clouds with large variations in point density Type de document : Article/Communication Auteurs : Yuan Li, Auteur ; Bo Wu, Auteur ; Xuming Ge, Auteur Année de publication : 2019 Article en page(s) : pp 151 - 165 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] champ aléatoire conditionnel
[Termes descripteurs IGN] classification
[Termes descripteurs IGN] classification basée sur les régions
[Termes descripteurs IGN] densité des points
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] Hong-Kong
[Termes descripteurs IGN] modèle 3D de l'espace urbain
[Termes descripteurs IGN] Paris (75)
[Termes descripteurs IGN] scène urbaine
[Termes descripteurs IGN] segmentation en régions
[Termes descripteurs IGN] segmentation hiérarchique
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] semis de pointsRésumé : (Auteur) Objects are formed by various structures and such structural information is essential for the identification of objects, especially for street facilities presented by mobile laser scanning (MLS) data with abundant details. However, due to the large volume of data, large variations in point density, noise and complexity of scanned scenes, the achievement of effective decomposition of objects into physical meaningful structures remains a challenge issue. And structural information has been rarely considered to improve the accuracy of distinguishing between objects with global or local similarity, such as traffic signs and traffic lights. Therefore, we propose a structural segmentation and classification method for MLS point clouds that is efficient and robust to variations in point density and complex urban scenes. During the segmentation stage, a novel region growing approach and a multi-size supervoxel segmentation algorithm robust to noise and varying density are combined to extract effective local shape descriptors. Structural components with physically meaningful labels are generated via structural labelling and clustering. During the classification stage, we consider the structural information at various scales and locations and encode it into a conditional random-field model for unary and pairwise inferences. High-order potentials are also introduced into the conditional random field to eliminate regional label noise. These high-order potentials are defined upon regions independent of connection relationships and can therefore take effect on isolated nodes. Experiments with two MLS datasets of typical urban scenes in Paris and Hong Kong were used to evaluate the performance of the proposed method. Nine and eleven different object classes were recognized from these two datasets with overall accuracies of 97.13% and 95.79%, respectively, indicating the effectiveness of the proposed method of interpreting complex urban scenes from point clouds with large variations in point density. Compared with previous studies on the Paris dataset, our method was able to recognize more classes and obtained a mean F1-score of 72.70% of seven common classes, being higher than the best of previous results. Numéro de notice : A2019-262 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.05.007 date de publication en ligne : 28/05/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.05.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93075
in ISPRS Journal of photogrammetry and remote sensing > vol 153 (July 2019) . - pp 151 - 165[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019071 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019073 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Semantic façade segmentation from airborne oblique images / Yaping Lin in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 6 (June 2019)
![]()
[article]
Titre : Semantic façade segmentation from airborne oblique images Type de document : Article/Communication Auteurs : Yaping Lin, Auteur ; Francesco Nex, Auteur ; Michael Ying Yang, Auteur Année de publication : 2019 Article en page(s) : pp 425 - 433 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] champ aléatoire conditionnel
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] façade
[Termes descripteurs IGN] image aérienne oblique
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] segmentation sémantiqueRésumé : (Auteur) In this paper, oblique airborne images with very high resolution are used to address the problem from aerial views in urban areas. Traditional classification method (i.e., random forests) is compared with state-of-the-art fully convolutional networks (FCNs). Random forests use hand-craft image features including red, green, blue (RGB), scale-invariant feature transform (SIFT), and Texton, and point cloud features consisting of normal vector and planarity extracted from different scales. In contrast, the inputs of FCNs are the RGB bands and the third components of normal vectors. In both cases, three-dimensional (3D) features are projected back into the image space to support the facade interpretation. Fully connected conditional random field (CRF) is finally taken as a post-processing of the FCN to refine the segmentation results. Several tests have been performed and the achieved results show that the models embedding the 3D component outperform the solution using only images. FCNs significantly outperformed random forests, especially for the balcony delineation. Numéro de notice : A2019-247 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.6.425 date de publication en ligne : 01/06/2019 En ligne : https://doi.org/10.14358/PERS.85.6.425 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93003
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 6 (June 2019) . - pp 425 - 433[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019061 SL Revue Centre de documentation Revues en salle Disponible Conditional random field and deep feature learning for hyperspectral image classification / Fahim Irfan Alam in IEEE Transactions on geoscience and remote sensing, vol 57 n° 3 (March 2019)
PermalinkLand cover classification in combined elevation and optical images supported by OSM data, mixed-level features, and non-local optimization algorithms / Dimitri Bulatov in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 3 (March 2019)
PermalinkCorrecting rural building annotations in OpenStreetMap using convolutional neural networks / John E. Vargas-Muñoz in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)
PermalinkPermalinkAutomatic building rooftop extraction from aerial images via hierarchical RGB-D priors / Shibiao Xu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
PermalinkDeep multi-task learning for a geographically-regularized semantic segmentation of aerial images / Michele Volpi in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)
PermalinkSpectral-spatial classification of hyperspectral images using wavelet transform and hidden Markov random fields / Elham Kordi Ghasrodashti in Geocarto international, vol 33 n° 8 (August 2018)
PermalinkContextual classification using photometry and elevation data for damage detection after an earthquake event / Ewelina Rupnik in European journal of remote sensing, vol 51 n° 1 (2018)
PermalinkCrop-rotation structured classification using multi-source sentinel images and LPIS for crop type mapping / Simon Bailly (2018)
PermalinkPermalink