Descripteur
Documents disponibles dans cette catégorie (101)



Etendre la recherche sur niveau(x) vers le bas
Effective CBIR based on hybrid image features and multilevel approach / D. Latha in Multimedia tools and applications, vol inconnu (March 2022)
![]()
[article]
Titre : Effective CBIR based on hybrid image features and multilevel approach Type de document : Article/Communication Auteurs : D. Latha, Auteur ; A. Geetha, Auteur Année de publication : 2022 Article en page(s) : pp Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] base de données d'images
[Termes IGN] écart type
[Termes IGN] espace colorimétrique
[Termes IGN] image en couleur
[Termes IGN] image RVB
[Termes IGN] matrice de co-occurrence
[Termes IGN] motif binaire local
[Termes IGN] niveau de gris (image)
[Termes IGN] observation multiniveaux
[Termes IGN] recherche d'image basée sur le contenu
[Termes IGN] saturation de la couleur
[Termes IGN] texture d'image
[Termes IGN] transformation intensité-teinte-saturationRésumé : (auteur) Content based image retrieval (CBIR) process can retrieve images by matching its feature set values. The proposed novel CBIR methodology called Effective CBIR based on hybrid image features and multilevel approach (CBIR_LTP_GLCM) integrates the hybrid features such as color features and texture features, along with multilevel approach. The color features such as mean and standard deviation are adopted in the proposed method to represent the global color properties of an image. This method manipulates the color input-image by processing the Hue, Saturation and Value channels of the HSV color space. This novel work is enriched with the image feature derived from Local Ternary Pattern (LTP) in addition with GLCM. So, the proposed method CBIR_LTP_GLCM is potentially charged with meaningful modifications travelling with color image manipulation and extended image retrieval accuracy with the aid of multilevel approach. The proposed methodology is experimentally compared with the existing recent CBIR versions by using the standard database such as Corel-1 k, and a user contributed database named DB_VEG. Numéro de notice : A2022-291 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11042-022-12588-7 Date de publication en ligne : 30/03/2022 En ligne : https://doi.org/10.1007/s11042-022-12588-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100337
in Multimedia tools and applications > vol inconnu (March 2022) . - pp[article]A methodology for producing realistic hill-shading map based on shaded relief map, digital orthophotographic map fusion and IHS transformation / Hongyun Zeng in Annals of GIS, vol 27 n° 4 (October 2021)
![]()
[article]
Titre : A methodology for producing realistic hill-shading map based on shaded relief map, digital orthophotographic map fusion and IHS transformation Type de document : Article/Communication Auteurs : Hongyun Zeng, Auteur ; Zhiqiang Xie, Auteur ; Jinqu Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 371 - 382 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie
[Termes IGN] données vectorielles
[Termes IGN] effet d'ombre
[Termes IGN] espace colorimétrique
[Termes IGN] géomorphologie
[Termes IGN] modèle numérique de surface
[Termes IGN] ombre
[Termes IGN] orthophotocarte
[Termes IGN] représentation du relief
[Termes IGN] teinte hypsométrique
[Termes IGN] transformation intensité-teinte-saturationRésumé : (auteur) The traditional hill-shading map is usually produced from a digital elevation model (DEM) by using the method of hypsometric tinting, which is capable of demonstrating the changes in geomorphology by setting the colors for hill-shading. However, the disadvantage is obvious that the surface features of the terrain can only be utilized by putting vector data on the map. Hence, the terrain display effect will be altered, especially in the production of large-scale maps, for which the artistic effect will be greatly weakened. This paper proposes a solution to this problem. First, we transform the RGB color space of the Digital orthophotographic map (DOM) image into the intensity-hue-saturation (IHS) color space. Then, we calculate the new value of the intensity as I′ for each pixel of the shaded relief model (SRM) of the high-resolution remote sensing image. Finally, we replace the component I with the new component I′ and then proceed with the inverse IHS transform. The case study shows that an objective representation of the actual situation is presented in the mapping area, and the 3D performance capabilities are enhanced. This research indicates that when the method of fusing the processed SRM with the IHS color system is used, the optimum index factor (OIF) and entropy of the generated map are 41.26 and 12.05, respectively, which are much greater than for the results of the traditional method. In other words, the proposed method can greatly enhance the terrain effect. Numéro de notice : A2021-667 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/19475683.2021.1921026 Date de publication en ligne : 04/05/2021 En ligne : https://doi.org/10.1080/19475683.2021.1921026 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98816
in Annals of GIS > vol 27 n° 4 (October 2021) . - pp 371 - 382[article]Developing reliably distinguishable color schemes for legends of natural resource taxonomy-based maps / Virgil Vlad in Cartography and Geographic Information Science, Vol 48 n° 5 (September 2021)
![]()
[article]
Titre : Developing reliably distinguishable color schemes for legends of natural resource taxonomy-based maps Type de document : Article/Communication Auteurs : Virgil Vlad, Auteur ; Mihai Toti, Auteur ; Sorina Dumitru, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 393 - 416 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Rédaction cartographique
[Termes IGN] carte d'occupation du sol
[Termes IGN] colorimétrie
[Termes IGN] couleur (rédaction cartographique)
[Termes IGN] couleur primaire
[Termes IGN] lecture de carte
[Termes IGN] légende cartographique
[Termes IGN] palette de couleurs
[Termes IGN] ressources naturelles
[Termes IGN] Roumanie
[Termes IGN] taxinomie
[Termes IGN] visualisation cartographiqueRésumé : (auteur) The legends of natural resource taxonomy-based maps (e.g. soil, geological, geomorphological, vegetation, and land cover/land use) need many different distinguishable colors. The existing methods of color selection for map legends are based on the designer subjectivity, ensuring schemes having few colors. An analysis of the modeling and management of colors in digital applications has led to define an algorithm to calculate an objective colorimetric measure of color difference – “DE*ab” – based on the perceptually uniform color model CIELAB. The proposed method consists of a set of specific rules for developing hierarchically structured color schemes and a specific procedure for ensuring selection of a large number of reliably distinguishable colors, based on a color difference threshold. The accuracy of color reproduction in printing processes is also taken into account. The method has been applied to develop a standard of colors for soil maps. It contains 63 colors and has been used for developing a soil map having 41 standard colors. A user test of the method results proved that thresholds of 10 DE*ab units and 15 DE*ab units ensure obtaining acceptably distinguishable colors for displaying/printing maps by using high-quality, respectively, current devices. Three datasets that support the research are given. Numéro de notice : A2021-643 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2021.1942218 Date de publication en ligne : 23/08/2021 En ligne : https://doi.org/10.1080/15230406.2021.1942218 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98340
in Cartography and Geographic Information Science > Vol 48 n° 5 (September 2021) . - pp 393 - 416[article]A learning-based approach to automatically evaluate the quality of sequential color schemes for maps / Taisheng Chen in Cartography and Geographic Information Science, Vol 48 n° 5 (September 2021)
![]()
[article]
Titre : A learning-based approach to automatically evaluate the quality of sequential color schemes for maps Type de document : Article/Communication Auteurs : Taisheng Chen, Auteur ; Menglin Chen, Auteur ; A - Xing Zhu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 377-392 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Rédaction cartographique
[Termes IGN] amélioration des couleurs
[Termes IGN] apprentissage automatique
[Termes IGN] charte de couleurs
[Termes IGN] cohérence des couleurs
[Termes IGN] contraste de couleurs
[Termes IGN] couleur (rédaction cartographique)
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] palette de couleurs
[Termes IGN] saturation de la couleur
[Termes IGN] visualisation cartographiqueRésumé : (auteur) Color quality evaluation is key to judging map quality, which can improve data visualization and communication. However, most existing methods for evaluating map colors are tedious and subjective manual methods. In this paper, we study sequential color schemes, a widely used map color type and propose a learning-based approach for evaluating the color quality. The approach consists of two steps. First, we extract and characterize the cartographic factors for determining the quality of sequential color schemes, such as color order, color match, color harmony, color discrimination and color uniformity. Second, we present a model to predict the color quality based on AdaBoost, a type of ensemble learning algorithm with excellent classification performance and use these factors as input data. We conduct a case study based on 781 samples and train the AdaBoost-based model to predict the quality of sequential color schemes. To evaluate the model’s performance, we calculated the area under the receiver operating characteristic (ROC) curve (AUC). The AUC values are 0.983 and 0.977 on the training data and testing data, respectively. These results indicate that the proposed approach can be used to automatically evaluate the quality of sequential color schemes for maps, which helps mapmakers select good colors. Numéro de notice : A2021-642 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2021.1936184 Date de publication en ligne : 29/06/2021 En ligne : https://doi.org/10.1080/15230406.2021.1936184 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98335
in Cartography and Geographic Information Science > Vol 48 n° 5 (September 2021) . - pp 377-392[article]Using geometric constraints to improve performance of image classifiers for automatic segmentation of traffic signs / Roholah Yazdan in Geomatica [en ligne], vol 75 n° 1 (Mars 2021)
![]()
[article]
Titre : Using geometric constraints to improve performance of image classifiers for automatic segmentation of traffic signs Type de document : Article/Communication Auteurs : Roholah Yazdan, Auteur ; Masood Varshosaz, Auteur ; Saied Pirasteh, Auteur ; Fabio Remondino, Auteur Année de publication : 2021 Article en page(s) : pp 28 - 50 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] contrainte géométrique
[Termes IGN] espace colorimétrique
[Termes IGN] programmation par contraintes
[Termes IGN] signalisation routièreRésumé : (auteur) Automatic detection and recognition of traffic signs from images is an important topic in many applications. At first, we segmented the images using a classification algorithm to delineate the areas where the signs are more likely to be found. In this regard, shadows, objects having similar colours, and extreme illumination changes can significantly affect the segmentation results. We propose a new shape-based algorithm to improve the accuracy of the segmentation. The algorithm works by incorporating the sign geometry to filter out the wrong pixels from the classification results. We performed several tests to compare the performance of our algorithm against those obtained by popular techniques such as Support Vector Machine (SVM), K-Means, and K-Nearest Neighbours. In these tests, to overcome the unwanted illumination effects, the images are transformed into colour spaces Hue, Saturation, and Intensity, YUV, normalized red green blue, and Gaussian. Among the traditional techniques used in this study, the best results were obtained with SVM applied to the images transformed into the Gaussian colour space. The comparison results also suggested that by adding the geometric constraints proposed in this study, the quality of sign image segmentation is improved by 10%–25%. We also comparted the SVM classifier enhanced by incorporating the geometry of signs with a U-Shaped deep learning algorithm. Results suggested the performance of both techniques is very close. Perhaps the deep learning results could be improved if a more comprehensive data set is provided. Numéro de notice : A2021-608 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1139/geomat-2020-0010 En ligne : https://doi.org/10.1139/geomat-2020-0010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98322
in Geomatica [en ligne] > vol 75 n° 1 (Mars 2021) . - pp 28 - 50[article]Apport de la photogrammétrie dans la documentation et le suivi d’une tranchée archéologique / Iris Lucas (2021)
PermalinkMultichannel Pulse-Coupled Neural Network-Based Hyperspectral Image Visualization / Puhong Duan in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
PermalinkCartographic symbol design considerations for the space–time cube / Christopher League in Cartographic journal (the), Vol 56 n° 2 (May 2019)
PermalinkSmart cartographic background symbolization for map mashups in geoportals : A proof of concept by example of landuse representation / Nadia H. Panchaud in Cartographic journal (the), Vol 56 n° 1 (February 2019)
PermalinkFusion de sets de photos provenant de capteurs différents dans le domaine de l’archéologie / Hugo De Paulis (2019)
PermalinkThe effect of spatial distance on the discriminability of colors in maps / Alžběta Brychtová in Cartography and Geographic Information Science, Vol 44 n° 3 (May 2017)
PermalinkEfficient terrestrial laser scan segmentation exploiting data structure / Hamid Mahmoudabadi in ISPRS Journal of photogrammetry and remote sensing, vol 119 (September 2016)
PermalinkAssessing the effectiveness and efficiency of map colour for colour impairments using an eye-tracking approach / Weihua Dong in Cartographic journal (the), Vol 53 n° 2 (May 2016)
PermalinkAn unsupervised urban change detection procedure by using luminance and saturation for multispectral remotely sensed images / Su Ye in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 8 (August 2015)
PermalinkSegmentation d'images aériennes par coopération LPE-régions et LPE-contours, application à la caractérisation de toitures / Youssef El Merabet in Revue Française de Photogrammétrie et de Télédétection, n° 206 (Avril 2014)
Permalink