Descripteur


Etendre la recherche sur niveau(x) vers le bas
Time-series snowmelt detection over the Antarctic using Sentinel-1 SAR images on Google Earth Engine / Dong Liang in Remote sensing of environment, Vol 256 (April 2020)
![]()
[article]
Titre : Time-series snowmelt detection over the Antarctic using Sentinel-1 SAR images on Google Earth Engine Type de document : Article/Communication Auteurs : Dong Liang, Auteur ; Huadong Guo, Auteur ; Lu Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 112318 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] albedo
[Termes descripteurs IGN] Antarctique
[Termes descripteurs IGN] calotte glaciaire
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] coefficient de rétrodiffusion
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] fonte des glaces
[Termes descripteurs IGN] Google Earth Engine
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] montée du niveau de la mer
[Termes descripteurs IGN] série temporelleRésumé : (auteur) The Antarctic ice sheet is an important mass of glacier ice. It is particularly sensitive to climate change, and the flow of Antarctica's inland glaciers into the sea, accelerated by collapsing ice shelves, threatens global sea level rise. The amount of snowmelt on the surface of the ice sheet is an important metric for accurately assessing surface material loss and albedo change, which affect the stability of the ice sheet. This study proposes a framework for quickly extracting time-series freeze-thaw information at the continental scale and 40 m resolution by taking advantage of the huge amount of synthetic aperture radar (SAR) data acquired by Sentinel-1 satellites over the Antarctic, available for rapid processing on Google Earth Engine. Co-orbit normalization is used in the proposed framework to establish a unified standard of judgement by reducing the variations in the backscattering coefficient introduced by observation geometry, terrain fluctuations, and melt conditions between images acquired at different times. We implemented the framework to produce a massive dataset of both monthly freeze-thaw information over the Antarctic and higher temporal resolution freeze-thaw information for the Larsen C ice shelf from 2015 to 2019, with overall accuracies of 93% verified by a manual visual interpretation method and 84% evaluated from automatic weather station temperatures. Due to its effectiveness and robustness, the framework can be used to analyse the spatiotemporal distribution of snowmelt, the change in melt area, and anomalous melt events in Antarctica, especially those in Larsen C caused by foehn wind. Numéro de notice : A2021-194 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112318 date de publication en ligne : 10/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112318 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97117
in Remote sensing of environment > Vol 256 (April 2020) . - n° 112318[article]Using a fully polarimetric SAR to detect landslide in complex surroundings: Case study of 2015 Shenzhen landslide / Chaoyang Niu in ISPRS Journal of photogrammetry and remote sensing, Vol 174 (April 2021)
![]()
[article]
Titre : Using a fully polarimetric SAR to detect landslide in complex surroundings: Case study of 2015 Shenzhen landslide Type de document : Article/Communication Auteurs : Chaoyang Niu, Auteur ; Haobo Zhang, Auteur ; Wei Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 56 - 67 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] décomposition d'image
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] mouvement de terrain
[Termes descripteurs IGN] polarimétrie radar
[Termes descripteurs IGN] processus d'analyse hiérarchique
[Termes descripteurs IGN] ShenzhenRésumé : (auteur) Synthetic aperture radar (SAR) polarimetry has demonstrated high efficiency in the detection of landslides in vegetated mountainous areas. In such places, post-landslide soil layers appear to correspond to the typical surface scattering mechanism, which is significantly different from the volume scattering behaviour of the surrounding vegetation. However, a landslide in the complex surroundings of various landforms, involving naked hillslopes, construction fields, bare farmlands, and other such aspects, may not be accurately identified owing to the occurrence of surface scattering behaviours. In order to detect landslides using SAR polarimetry without the limitation of vegetated mountainous areas, we propose a novel method of combining change detection (CD) and an analytic hierarchy process (AHP) based on the Yamaguchi decomposition (YD) to identify landslides while ensuring fewer false alarms. In particular, CD is applied to a pair of pre- and post-event datasets to determine the regions modified by landslides or human activities, and the AHP is performed over the post-event dataset to identify the suspect landslide region characterised by the surface scattering mechanism. Finally, the two results are fused by a logical operation to identify the actual landslide by removing the non-modified surface scattering regions. A case study of the Shenzhen landslide in complex surroundings was considered to verify the performance of the proposed method (CD-AHP). The results indicate that the method could clearly define the main body of the Shenzhen landslide from the city suburbs with a small number of false alarms. Therefore, this method provides a considerable perspective for landslide detection in complex surroundings using SAR polarimetry. Numéro de notice : A2021-207 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.022 date de publication en ligne : 19/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.022 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97184
in ISPRS Journal of photogrammetry and remote sensing > Vol 174 (April 2021) . - pp 56 - 67[article]Damage detection using SAR coherence statistical analysis, application to Beirut, Lebanon / Tamer ElGharbawi in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
![]()
[article]
Titre : Damage detection using SAR coherence statistical analysis, application to Beirut, Lebanon Type de document : Article/Communication Auteurs : Tamer ElGharbawi, Auteur ; Fawzi Zarzoura, Auteur Année de publication : 2021 Article en page(s) : pp 1 - 9 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] Beyrouth
[Termes descripteurs IGN] catastrophe
[Termes descripteurs IGN] corrélation
[Termes descripteurs IGN] décorrélation
[Termes descripteurs IGN] dommage matériel
[Termes descripteurs IGN] étude d'impact
[Termes descripteurs IGN] filtre passe-haut
[Termes descripteurs IGN] image radar moiréeRésumé : (auteur) Early well-coordinated response during unexpected catastrophes can define the near future of the stricken regions. Beirut city, Lebanon, was one of the unfortunate regions to endure the horrific ordeal of an unexpected explosion that caused thousands of human casualties, billions of dollars’ worth of property damage, and destroyed its main maritime entry point. In this paper, we identify damaged regions and classify their severity using a simple and robust SAR correlation technique. We employ phase coherence and amplitude correlation of a SAR stack to estimate pixels’ damage probability using hypothesis testing. We use a spatial phase filter applied in the frequency domain to improve the estimated coherence by removing the spatial decorrelation component of the total estimated coherence. Using this filter improved the coherence of nearly 44.2% of pixels identified with coherence less than 0.25 in our study area. The estimated damaged regions are presented and compared against a damage map issued by Advanced Rapid Imaging and Analysis (ARIA) which shows an average agreement of 68.3%. Also, a fine agreement was observed when compared to optical satellite images. Numéro de notice : A2021-100 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.00 date de publication en ligne : 15/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96871
in ISPRS Journal of photogrammetry and remote sensing > Vol 173 (March 2021) . - pp 1 - 9[article]Robust unsupervised small area change detection from SAR imagery using deep learning / Xinzheng Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
![]()
[article]
Titre : Robust unsupervised small area change detection from SAR imagery using deep learning Type de document : Article/Communication Auteurs : Xinzheng Zhang, Auteur ; Hang Su, Auteur ; Ce Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 79 - 94 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] algorithme de superpixels
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] filtre de déchatoiement
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] ondelette
[Termes descripteurs IGN] regroupement de donnéesRésumé : (auteur) Small area change detection using synthetic aperture radar (SAR) imagery is a highly challenging task, due to speckle noise and imbalance between classes (changed and unchanged). In this paper, a robust unsupervised approach is proposed for small area change detection using deep learning techniques. First, a multi-scale superpixel reconstruction method is developed to generate a difference image (DI), which can suppress the speckle noise effectively and enhance edges by exploiting local, spatially homogeneous information. Second, a two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes with a parallel clustering strategy. Image patches belonging to the first two classes are then constructed as pseudo-label training samples, and image patches of the intermediate class are treated as testing samples. Finally, a convolutional wavelet neural network (CWNN) is designed and trained to classify testing samples into changed or unchanged classes, coupled with a deep convolutional generative adversarial network (DCGAN) to increase the number of changed class within the pseudo-label training samples. Numerical experiments on four real SAR datasets demonstrate the validity and robustness of the proposed approach, achieving up to 99.61% accuracy for small area change detection. Numéro de notice : A2021-103 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.004 date de publication en ligne : 17/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.004 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96879
in ISPRS Journal of photogrammetry and remote sensing > Vol 173 (March 2021) . - pp 79 - 94[article]Comprehensive time-series analysis of bridge deformation using differential satellite radar interferometry based on Sentinel-1 / Matthias Schlögl in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : Comprehensive time-series analysis of bridge deformation using differential satellite radar interferometry based on Sentinel-1 Type de document : Article/Communication Auteurs : Matthias Schlögl, Auteur ; Barbara Widhalm, Auteur ; Michael Avian, Auteur Année de publication : 2021 Article en page(s) : pp 132 - 146 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] coin réflecteur
[Termes descripteurs IGN] déformation d'édifice
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] interféromètrie par radar à antenne synthétique
[Termes descripteurs IGN] lissage de données
[Termes descripteurs IGN] pont
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance d'ouvrage
[Termes descripteurs IGN] variation saisonnière
[Termes descripteurs IGN] Vienne (capitale Autriche)Résumé : (auteur) We present a comprehensive methodological framework for structural deformation monitoring of critical infrastructure assets based on differential SAR interferometry. By employing persistent scatterer interferometry, deformation time series in line-of-sight are derived from freely available Sentinel-1 single look complex products. These raw time series are analysed and refined using an extensive post-processing chain to obtain daily rates for vertical and horizontal deformation components. The post-processing includes cleaning, smoothing and a temperature correction to account for different sensing times in ascending and descending orbits. Longitudinal clustering of time series is used to reveal spatial patterns in the single epoch deformation series. Seasonal trend decomposition of the aggregated time series is performed to separate deformation trends from seasonal deformations. The applicability of the framework is showcased at the example of an integral concrete bridge located in the port of Vienna. Results are validated against in situ deformation measurements. The presented framework constitutes a blueprint for the continuous monitoring of critical infrastructure assets using satellite interferometry, which may supplement conventional structural health monitoring. Numéro de notice : A2021-088 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.001 date de publication en ligne : 30/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96855
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 132 - 146[article]Multiscale CNN with autoencoder regularization joint contextual attention network for SAR image classification / Zitong Wu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkOptimizing flood mapping using multi-synthetic aperture radar images for regions of the lower mekong basin in Vietnam / Vu Anh Tuan in European journal of remote sensing, vol 54 n° 1 (2021)
PermalinkSAR image speckle reduction based on nonconvex hybrid total variation model / Yuli Sun in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkSpruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery / Rajeev Bhattarai in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
PermalinkStudy of systematic bias in measuring surface deformation with SAR interferometry / Homa Ansari in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkTropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning / Maryam Pourshamsi in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
PermalinkEvaluation of a neural network with uncertainty for detection of ice and water in SAR imagery / Nazanin Asadi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkGeospatial analysis of September, 2019 floods in the lower gangetic plains of Bihar using multi-temporal satellites and river gauge data / C.M. Bhatt in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)
PermalinkHolographic SAR tomography 3-D reconstruction based on iterative adaptive approach and generalized likelihood ratio test / Dong Feng in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkImpact of forest disturbance on InSAR surface displacement time series / Paula M. Bürgi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
Permalink