Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Asie (géographie politique) > Chine > Pékin (Chine)
Pékin (Chine)Synonyme(s)Beijing |
Documents disponibles dans cette catégorie (45)



Etendre la recherche sur niveau(x) vers le bas
Application of a graph convolutional network with visual and semantic features to classify urban scenes / Yongyang Xu in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)
![]()
[article]
Titre : Application of a graph convolutional network with visual and semantic features to classify urban scenes Type de document : Article/Communication Auteurs : Yongyang Xu, Auteur ; Shuai Jin, Auteur ; Zhanlong Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2009-2034 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] matrice de co-occurrence
[Termes IGN] OpenStreetMap
[Termes IGN] Pékin (Chine)
[Termes IGN] point d'intérêt
[Termes IGN] relation spatiale
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] scène urbaineRésumé : (auteur) Urban scenes consist of visual and semantic features and exhibit spatial relationships among land-use types (e.g. industrial areas are far away from the residential zones). This study applied a graph convolutional network with neighborhood information (henceforth, named the neighbour supporting graph convolutional neural network), to learn spatial relationships for urban scene classification. Furthermore, a co-occurrence analysis with visual and semantic features proceeded to improve the accuracy of urban scene classification. We tested the proposed method with the fifth ring road of Beijing with an overall classification accuracy of 0.827 and a Kappa coefficient of 0.769. In comparison with other methods, such as support vector machine, random forest, and general graph convolutional network, the case study showed that the proposed method improved about 10% in urban scene classification. Numéro de notice : A2022-740 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2048834 Date de publication en ligne : 10/03/2022 En ligne : https://doi.org/10.1080/13658816.2022.2048834 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101717
in International journal of geographical information science IJGIS > vol 36 n° 10 (October 2022) . - pp 2009-2034[article]A framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method / Yongyang Xu in Computers, Environment and Urban Systems, vol 95 (July 2022)
![]()
[article]
Titre : A framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method Type de document : Article/Communication Auteurs : Yongyang Xu, Auteur ; Bo Zhou, Auteur ; Shuai Jin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101807 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] arbre aléatoire minimum
[Termes IGN] distribution spatiale
[Termes IGN] noeud
[Termes IGN] Pékin (Chine)
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] réseau neuronal de graphes
[Termes IGN] taxinomie
[Termes IGN] trafic routier
[Termes IGN] triangulation de Delaunay
[Termes IGN] utilisation du sol
[Termes IGN] zone urbaineRésumé : (auteur) Land-use classification plays an important role in urban planning and resource allocation and had contributed to a wide range of urban studies and investigations. With the development of crowdsourcing technology and map services, points of interest (POIs) have been widely used for recognizing urban land-use types. However, current research methods for land-use classifications have been limited to extracting the spatial relationship of POIs in research units. To close this gap, this study uses a graph-based data structure to describe the POIs in research units, with graph convolutional networks (GCNs) being introduced to extract the spatial context and urban land-use classification. First, urban scenes are built by considering the spatial context of POIs. Second, a graph structure is used to express the scenes, where POIs are treated as graph nodes. The spatial distribution relationship of POIs is considered to be the graph's edges. Third, a GCN model is designed to extract the spatial context of the scene by aggregating the information of adjacent nodes within the graph and urban land-use classification. Thus, the land-use classification can be treated as a classification on a graphic level through deep learning. Moreover, the POI spatial context can be effectively extracted during classification. Experimental results and comparative experiments confirm the effectiveness of the proposed method. Numéro de notice : A2022-460 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101807 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101807 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100622
in Computers, Environment and Urban Systems > vol 95 (July 2022) . - n° 101807[article]Detecting interchanges in road networks using a graph convolutional network approach / Min Yang in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
![]()
[article]
Titre : Detecting interchanges in road networks using a graph convolutional network approach Type de document : Article/Communication Auteurs : Min Yang, Auteur ; Chenjun Jiang, Auteur ; Xiongfeng Yan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1119 - 1139 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse vectorielle
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification semi-dirigée
[Termes IGN] détection d'objet
[Termes IGN] échangeur routier
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] modélisation
[Termes IGN] noeud
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Detecting interchanges in road networks benefit many applications, such as vehicle navigation and map generalization. Traditional approaches use manually defined rules based on geometric, topological, or both properties, and thus can present challenges for structurally complex interchange. To overcome this drawback, we propose a graph-based deep learning approach for interchange detection. First, we model the road network as a graph in which the nodes represent road segments, and the edges represent their connections. The proposed approach computes the shape measures and contextual properties of individual road segments for features characterizing the associated nodes in the graph. Next, a semi-supervised approach uses these features and limited labeled interchanges to train a graph convolutional network that classifies these road segments into an interchange and non-interchange segments. Finally, an adaptive clustering approach groups the detected interchange segments into interchanges. Our experiment with the road networks of Beijing and Wuhan achieved a classification accuracy >95% at a label rate of 10%. Moreover, the interchange detection precision and recall were 79.6 and 75.7% on the Beijing dataset and 80.6 and 74.8% on the Wuhan dataset, respectively, which were 18.3–36.1 and 17.4–19.4% higher than those of the existing approaches based on characteristic node clustering. Numéro de notice : A2022-404 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2024195 Date de publication en ligne : 11/03/2022 En ligne : https://doi.org/10.1080/13658816.2021.2024195 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100716
in International journal of geographical information science IJGIS > vol 36 n° 6 (June 2022) . - pp 1119 - 1139[article]Extracting the urban landscape features of the historic district from street view images based on deep learning: A case study in the Beijing Core area / Siming Yin in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)
![]()
[article]
Titre : Extracting the urban landscape features of the historic district from street view images based on deep learning: A case study in the Beijing Core area Type de document : Article/Communication Auteurs : Siming Yin, Auteur ; Xian Guo, Auteur ; Jie Jiang, Auteur Année de publication : 2022 Article en page(s) : n° 326 Note générale : résumé Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image Streetview
[Termes IGN] paysage urbain
[Termes IGN] Pékin (Chine)
[Termes IGN] segmentation sémantique
[Termes IGN] site historiqueRésumé : (auteur) Accurate extraction of urban landscape features in the historic district of China is an essential task for the protection of the cultural and historical heritage. In recent years, deep learning (DL)-based methods have made substantial progress in landscape feature extraction. However, the lack of annotated data and the complex scenarios inside alleyways result in the limited performance of the available DL-based methods when extracting landscape features. To deal with this problem, we built a small yet comprehensive history-core street view (HCSV) dataset and propose a polarized attention-based landscape feature segmentation network (PALESNet) in this article. The polarized self-attention block is employed in PALESNet to discriminate each landscape feature in various situations, whereas the atrous spatial pyramid pooling (ASPP) block is utilized to capture the multi-scale features. As an auxiliary, a transfer learning module was introduced to supplement the knowledge of the network, to overcome the shortage of labeled data and improve its learning capability in the historic districts. Compared to other state-of-the-art methods, our network achieved the highest accuracy in the case study of Beijing Core Area, with an mIoU of 63.7% on the HCSV dataset; and thus could provide sufficient and accurate data for further protection and renewal in Chinese historic districts. Numéro de notice : A2022-410 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11060326 Date de publication en ligne : 28/05/2022 En ligne : https://doi.org/10.3390/ijgi11060326 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100760
in ISPRS International journal of geo-information > vol 11 n° 6 (June 2022) . - n° 326[article]How do voice-assisted digital maps influence human wayfinding in pedestrian navigation? / Yawei Xu in Cartography and Geographic Information Science, vol 49 n° 3 (May 2022)
![]()
[article]
Titre : How do voice-assisted digital maps influence human wayfinding in pedestrian navigation? Type de document : Article/Communication Auteurs : Yawei Xu, Auteur ; Tong Qin, Auteur ; Yulin Wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 271 - 287 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie numérique
[Termes IGN] acquisition de connaissances
[Termes IGN] cognition
[Termes IGN] comportement
[Termes IGN] itinéraire piétionnier
[Termes IGN] navigation pédestre
[Termes IGN] oculométrie
[Termes IGN] orientation
[Termes IGN] Pékin (Chine)
[Termes IGN] questionnaireRésumé : (auteur) Voice-assisted digital maps have become mainstream navigation aids for pedestrian navigation. Although these maps are widely studied and applied, it is still unclear how they affect human behavior and spatial knowledge acquisition. In this study, we recruited thirty-three college students to carry out an outdoor wayfinding experiment. We compared the effects of voice-assisted digital maps with those of digital maps without voice instructions and paper maps by using eye tracking, sketch maps, questionnaires and interviews. The results show that, compared to the other map types, voice-assisted digital maps can help users reach their destinations more quickly and pay more attention to moving objects, thereby increasing the comfort levels of participants. However, the efficiency of voice-assisted maps on route memory tasks does not rival that of paper maps. Overall, the use of voice-assisted digital maps saves time but may reduce pedestrians’ spatial knowledge acquisition. The results of this study reveal the influence of voice on pedestrian wayfinding and deepen the scientific understanding of the multimedia navigation mode in shaping human spatial ability. Numéro de notice : A2022-295 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2021.2017798 Date de publication en ligne : 13/01/2022 En ligne : https://doi.org/10.1080/15230406.2021.2017798 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100347
in Cartography and Geographic Information Science > vol 49 n° 3 (May 2022) . - pp 271 - 287[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2022031 RAB Revue Centre de documentation En réserve L003 Disponible Exploring the relationship between the 2D/3D architectural morphology and urban land surface temperature based on a boosted regression tree: A case study of Beijing, China / Zhen Li in Sustainable Cities and Society, vol 78 (March 2022)
PermalinkExploring the advantages of the maximum entropy model in calibrating cellular automata for urban growth simulation: a comparative study of four methods / Bin Zhang in GIScience and remote sensing, vol 59 n° 1 (2022)
PermalinkGenerating 2m fine-scale urban tree cover product over 34 metropolises in China based on deep context-aware sub-pixel mapping network / Da He in International journal of applied Earth observation and geoinformation, vol 106 (February 2022)
PermalinkSNN_flow: a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows / Qiliang Liu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
PermalinkThe spatiotemporal implications of urbanization for urban heat islands in Beijing: A predictive approach based on CA–Markov modeling (2004–2050) / Muhammad Amir Siddique in Remote sensing, vol 13 n° 22 (November-2 2021)
PermalinkLand subsidence in Beijing’s sub-administrative center and its relationship with urban expansion inferred from Sentinel-1/2 observations / Jin Cao in Canadian journal of remote sensing, vol 47 n° 6 ([01/11/2021])
PermalinkMultiscale geographically and temporally weighted regression with a unilateral temporal weighting scheme and its application in the analysis of spatiotemporal characteristics of house prices in Beijing / Zhi Zhang in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
PermalinkUsing information entropy and a multi-layer neural network with trajectory data to identify transportation modes / Qingying Yu in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)
PermalinkExploration and analysis of the factors influencing GNSS PWV for nowcasting applications / Min Guo in Advances in space research, vol 67 n° 12 (15 June 2021)
PermalinkA trajectory restoration algorithm for low-sampling-rate floating car data and complex urban road networks / Bozhao Li in International journal of geographical information science IJGIS, vol 35 n° 4 (April 2021)
Permalink