Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Asie (géographie politique) > Chine > Fleuve bleu (Chine)
Fleuve bleu (Chine)Synonyme(s)Yangtze Chang Jiang |
Documents disponibles dans cette catégorie (20)



Etendre la recherche sur niveau(x) vers le bas
Combining a class-weighted algorithm and machine learning models in landslide susceptibility mapping: A case study of Wanzhou section of the Three Gorges Reservoir, China / Huijuan Zhang in Computers & geosciences, vol 158 (January 2022)
![]()
[article]
Titre : Combining a class-weighted algorithm and machine learning models in landslide susceptibility mapping: A case study of Wanzhou section of the Three Gorges Reservoir, China Type de document : Article/Communication Auteurs : Huijuan Zhang, Auteur ; Yingxu Song, Auteur ; Shiluo Xu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104966 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] aléa
[Termes IGN] apprentissage automatique
[Termes IGN] base de données localisées
[Termes IGN] cartographie des risques
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] effondrement de terrain
[Termes IGN] modèle de simulation
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression logistique
[Termes IGN] risque naturel
[Termes IGN] Trois Gorges, barrage desRésumé : (auteur) This study aims to investigate the application of a class-weighted algorithm combined with conventional machine learning model (logistic regression (LR)) and ensemble machine learning models (LightGBM and random forest (RF)) to the landslide susceptibility evaluation. Wanzhou section of the Three Gorges Reservoir area, China, frequently suffering numerous landslides, is chosen as an example. The class-weighted algorithm focuses on the class-imbalanced issue of landslide and non-landslide samples, and it can turn the class-imbalanced issue into a cost-sensitive machine learning by setting unequal weights for different classes, which contribute to improving the accuracy of landslide susceptibility evaluation. The landslide inventory database was produced by field investigation and remote sensing images derived from Google Earth. Of the 233 landslides in the inventory, 40% were used for validation, and the remaining 60% were used for training purposes. Twelve environmental parameters (elevation, slope, aspect, curvature, distance to river, NDVI, NDWI, rainfall, seismic intensity, land use, TRI, lithology) were treated as inputs of the models to produce a landslide susceptibility map (LSM). The AUC value, Balanced accuracy, and Geometric mean score were utilized to estimate the quality of models. The result shows that the weighted models (weighted logistic regression (WLR), weighted LightGBM (WLightGBM), weighted random forest (WRF) have higher AUC values, Balanced accuracy, and Geometric mean scores than those of unweighted methods, which demonstrates that the weighted models exhibit better than unweighted models, with the WRF model having the best performance. The landslide susceptibility map of the Wanzhou section displays that the high and very high landslide susceptibility zones are mainly distributed on both sides of the river. The insights from this research will be useful for ameliorating the landslide susceptibility mapping and the prevention and mitigation for the Wanzhou section. Numéro de notice : A2022-029 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.cageo.2021.104966Get rights and content Date de publication en ligne : 27/10/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.104966Get rights and content Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99268
in Computers & geosciences > vol 158 (January 2022) . - n° 104966[article]Rapid and large-scale mapping of flood inundation via integrating spaceborne synthetic aperture radar imagery with unsupervised deep learning / Xin Jiang in ISPRS Journal of photogrammetry and remote sensing, vol 178 (August 2021)
![]()
[article]
Titre : Rapid and large-scale mapping of flood inundation via integrating spaceborne synthetic aperture radar imagery with unsupervised deep learning Type de document : Article/Communication Auteurs : Xin Jiang, Auteur ; Shijing Liang, Auteur ; Xinyue He, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 36 - 50 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] cartographie des risques
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Fleuve bleu (Chine)
[Termes IGN] Google Earth Engine
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] inondation
[Termes IGN] modèle numérique de surface
[Termes IGN] segmentation d'image
[Termes IGN] superpixel
[Termes IGN] surveillance hydrologiqueRésumé : (auteur) Synthetic aperture radar (SAR) has great potential for timely monitoring of flood information as it penetrates the clouds during flood events. Moreover, the proliferation of SAR satellites with high spatial and temporal resolution provides a tremendous opportunity to understand the flood risk and its quick response. However, traditional algorithms to extract flood inundation using SAR often require manual parameter tuning or data annotation, which presents a challenge for the rapid automated mapping of large and complex flooded scenarios. To address this issue, we proposed a segmentation algorithm for automatic flood mapping in near-real-time over vast areas and for all-weather conditions by integrating Sentinel-1 SAR imagery with an unsupervised machine learning approach named Felz-CNN. The algorithm consists of three phases: (i) super-pixel generation; (ii) convolutional neural network-based featurization; (iii) super-pixel aggregation. We evaluated the Felz-CNN algorithm by mapping flood inundation during the Yangtze River flood in 2020, covering a total study area of 1,140,300 km2. When validated on fine-resolution Planet satellite imagery, the algorithm accurately identified flood extent with producer and user accuracy of 93% and 94%, respectively. The results are indicative of the usefulness of our unsupervised approach for the application of flood mapping. Meanwhile, we overlapped the post-disaster inundation map with a 10-m resolution global land cover map (FROM-GLC10) to assess the damages to different land cover types. Of these types, cropland and residential settlements were most severely affected, with inundation areas of 9,430.36 km2 and 1,397.50 km2, respectively, results that are in agreement with statistics from relevant agencies. Compared with traditional supervised classification algorithms that require time-consuming data annotation, our unsupervised algorithm can be deployed directly to high-performance computing platforms such as Google Earth Engine and PIE-Engine to generate a large-spatial map of flood-affected areas within minutes, without time-consuming data downloading and processing. Importantly, this efficiency enables the fast and effective monitoring of flood conditions to aid in disaster governance and mitigation globally. Numéro de notice : A2021-560 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.05.019 Date de publication en ligne : 09/06/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.05.019 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98118
in ISPRS Journal of photogrammetry and remote sensing > vol 178 (August 2021) . - pp 36 - 50[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021081 SL Revue Centre de documentation Revues en salle Disponible 081-2021083 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2021082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Remote sensing method for extracting topographic information on tidal flats using spatial distribution features / Yang Lijun in Marine geodesy, vol 44 n° 5 (September 2021)
![]()
[article]
Titre : Remote sensing method for extracting topographic information on tidal flats using spatial distribution features Type de document : Article/Communication Auteurs : Yang Lijun, Auteur ; Xiao Yao, Auteur ; Jie Jiang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 408 - 431 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] alluvion
[Termes IGN] arpentage
[Termes IGN] Chine
[Termes IGN] distribution spatiale
[Termes IGN] données topographiques
[Termes IGN] extraction de données
[Termes IGN] Fleuve bleu (Chine)
[Termes IGN] géomorphologie locale
[Termes IGN] image Landsat
[Termes IGN] marée océanique
[Termes IGN] modèle numérique de surface
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] Shanghai (Chine)
[Termes IGN] vaseRésumé : (Auteur) A remote sensing method combining remote sensing and ground surveying is proposed to extract tidal flat topographic information via the spatial distribution characteristics of tidal flat surface features. Based on the eastern Chongming beach of the Yangtze Estuary and Landsat-5 satellite images, this study identifies the spatial distribution characteristics of tidal flat features using field-based RTK data and spectral data. The remote sensing method for extracting the geometric and physical characteristics of linear and surface geographical elements on tidal flats and the elevation assignment method are discussed. The effectiveness of this method is verified by the quality of the resultant tidal flat DEM. The results show that the use of spatial distribution features in remote sensing images can provide rich topographic information. The DEM results have an accuracy of 0.16 m, are in line with the basic topographic patterns of tidal flats, and can describe local microscale geomorphic features. This technique solves the problem of a single topographic information source in current remote sensing measurement methods and provides technical support for detecting dynamic changes in coastal zones by using remote sensing technology. Numéro de notice : A2021-577 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01490419.2021.1925791 Date de publication en ligne : 04/06/2021 En ligne : https://doi.org/10.1080/01490419.2021.1925791 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98230
in Marine geodesy > vol 44 n° 5 (September 2021) . - pp 408 - 431[article]An improved temporal mixture analysis unmixing method for estimating impervious surface area based on MODIS and DMSP-OLS data / Li Zhuo in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
![]()
[article]
Titre : An improved temporal mixture analysis unmixing method for estimating impervious surface area based on MODIS and DMSP-OLS data Type de document : Article/Communication Auteurs : Li Zhuo, Auteur ; Qingli Shi, Auteur ; Haiyan Tao, Auteur ; Jing Zheng, Auteur ; Qiuping Li, Auteur Année de publication : 2018 Article en page(s) : pp 64 - 77 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges temporels
[Termes IGN] détection de changement
[Termes IGN] Enhanced vegetation index
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] Fleuve bleu (Chine)
[Termes IGN] image DMSP-OLS
[Termes IGN] image Terra-MODIS
[Termes IGN] Kouangtoung (Chine)
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] surface imperméableRésumé : (Auteur) Impervious surface area (ISA) is an important indicator for monitoring the intensity of human activity and ecological environment changes. Developing effective methods for estimation of ISA at different scales has thus been pursued by many scientists. The temporal mixture analysis (TMA), which is a variant of spectral mixture analysis that makes full use of the phenological information of different land cover types, is suitable for estimating the ISA fraction at a large scale. The existing TMA-based ISA fraction estimation methods rely on the assumption that pure pixels exist for all the endmembers, which, however, is not true in the case of coarse-resolution datasets. Moreover, the existing method cannot effectively differentiate bare soil from ISA effectively, which may lead to overestimation of the ISA fraction. To address these problems, we propose a new ISA estimation method based on TMA in this study, using a Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) products, the GlobeLand30 product, and the Defense Meteorological Satellite Program-Operational Linescan System (DMSP-OLS) data. The proposed method contains four major steps. First, the MODIS NDVI time-series datasets and GlobeLand30 land cover product were used to create an NDVI temporal profile subset for the TMA model. Second, a preliminary ISA fraction map was derived on the basis of optimized endmember temporal profiles, which were generated by unmixing the selected NDVI temporal profile subset through an improved spatial-spectral preprocessing nonnegative matrix factorization algorithm (ISSPP-NMF). Then, the preliminary ISA fraction was further optimized by incorporating the EVI-adjusted night-time light index (EANTLI), which can mitigate both saturation problems and the blooming effect of the DMSP-OLS data. An effective threshold method was introduced in this step to reduce the impact of bare soil on the ISA estimation. Finally, the estimated fraction of ISA was evaluated through accuracy assessment. The proposed method was tested in two study areas, namely, Guangdong Province and the Yangtze River Delta (YRD) of China, to prove its applicability in different regions. Effectiveness of the proposed method was proven through the comparison between the proposed method with traditional TMA-based methods. The results from these analyses indicate that the proposed method outperforms the others in ISA estimation, with an overall root mean square error (RMSE) of 9.2% and a coefficient of determination (R2) of 0.8872 in Guangdong and a RMSE of 8.9% and R2 of 0.8923 in YRD. This study also proves that the ISSPP-NMF method can produce more appropriate endmembers regardless of the existence of pure pixels. The post-processing with the EANLTI procedure can effectively reduce the bare soil effect in TMA-based ISA estimation. Numéro de notice : A2018-292 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.05.016 Date de publication en ligne : 05/06/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.05.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90409
in ISPRS Journal of photogrammetry and remote sensing > vol 142 (August 2018) . - pp 64 - 77[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018081 RAB Revue Centre de documentation En réserve 3L Disponible 081-2018083 DEP-EXM Revue LaSTIG Dépôt en unité Exclu du prêt 081-2018082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt From hierarchy to networking: the evolution of the “twenty-first-century Maritime Silk Road” container shipping system / Liehui Wang in Transport reviews, vol 38 n° 4 ([01/07/2018])
![]()
[article]
Titre : From hierarchy to networking: the evolution of the “twenty-first-century Maritime Silk Road” container shipping system Type de document : Article/Communication Auteurs : Liehui Wang, Auteur ; Yan Zhu, Auteur ; César Ducruet, Auteur ; Mattia Bunel , Auteur ; Yui-yip Lau, Auteur
Année de publication : 2018 Projets : 1-Pas de projet / Article en page(s) : pp 416 - 435 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Chine
[Termes IGN] delta de la rivière des perles
[Termes IGN] Fleuve bleu (Chine)
[Termes IGN] port
[Termes IGN] Shanghai (Chine)
[Termes IGN] Shenzhen
[Termes IGN] théorie des graphes
[Termes IGN] trafic maritime
[Termes IGN] transport maritime
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Container shipping gives a rise of international trade since the 1960s. Based on navigation data start from the mid-1990s to 2016, this paper empirically analyses the spatial pattern of China’s international maritime linkages along the “twenty-first-century Maritime Silk Road”. We interpret such evolutionary dynamics in terms of growth, hierarchical diffusion and networking phases. Networking is a new stage of the evolution of the port system, which is approached based on the graph theory, complex network methods and geomatics, the paper discusses the networking’s basic characteristics: multi-hub spatial agglomeration, the connection of the network develops across space, functional differentiation and a division of labour appear among ports. Our results show that, while the scope of China’s maritime linkages had expanded overtime, more foreign ports become connected to the “Maritime Silk Road”. In addition, the external linkages of domestic ports tend to be dispersed, reflecting upon the decline of Pearl River Delta ports and the rise of Yangtze River Delta ports, with mixed evidence for the Bohai Rim region. Lastly, the analysis underlines the emergence of a polycentric shipping system, from the Hong Kong dominance to the more diversified Shanghai/Ningbo/Shenzhen configuration. Academic and managerial implications are included. Numéro de notice : A2018-660 Affiliation des auteurs : LASTIG COGIT+Ext (2012-2019) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01441647.2018.1441923 Date de publication en ligne : 25/02/2018 En ligne : https://doi.org/10.1080/01441647.2018.1441923 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93839
in Transport reviews > vol 38 n° 4 [01/07/2018] . - pp 416 - 435[article]Geospatial web-based sensor information model for integrating satellite observation: An example in the field of flood disaster management / Chuli Hu in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 10 (October 2013)
PermalinkLand use and land cover change detection using satellite remote sensing techniques in the mountainous Three Gorges Area, China / Z. Chen in International Journal of Remote Sensing IJRS, vol 31 n° 6 (March 2010)
PermalinkA scheme for ship detection in inhomogeneous regions based on segmentation of SAR images / F. Zhang in International Journal of Remote Sensing IJRS, vol 29 n°19-20 (October 2008)
PermalinkSuspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data / Z. Han in International Journal of Remote Sensing IJRS, vol 27 n°18 - 19 - 20 (October 2006)
PermalinkLandslide monitoring in the Three Gorges area using D-InSAR and corner reflectors / Y. Xia in Photogrammetric Engineering & Remote Sensing, PERS, vol 70 n° 10 (October 2004)
PermalinkAnalyse et modélisation de mouvements de versant déclenchés par le plan d'eau d'une retenue de barrage / Y. Cai (2000)
PermalinkLe barrage des trois gorges (Chine) / L. Merchez in Mappemonde, vol 1999 n° 3 tome 55 (septembre 1999)
PermalinkDigital processing and information extraction of the remote sensing images in the Yangtze Three Gorges project region, China / W. Yang (1999)
PermalinkPermalinkPermalink