Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Asie (géographie politique) > Chine > Yunnan (Chine)
Yunnan (Chine) |
Documents disponibles dans cette catégorie (7)



Etendre la recherche sur niveau(x) vers le bas
Analysis of the spatial range of service and accessibility of hospitals designated for coronavirus disease 2019 in Yunnan Province, China / Liangting Zheng in Geocarto international, vol 37 n° 22 ([10/10/2022])
![]()
[article]
Titre : Analysis of the spatial range of service and accessibility of hospitals designated for coronavirus disease 2019 in Yunnan Province, China Type de document : Article/Communication Auteurs : Liangting Zheng, Auteur ; Jia Li, Auteur ; Wenying Hu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6519 - 6537 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] accessibilité
[Termes IGN] diagramme de Voronoï
[Termes IGN] données médicales
[Termes IGN] données routières
[Termes IGN] épidémie
[Termes IGN] interpolation inversement proportionnelle à la distance
[Termes IGN] interpolation par pondération de zones
[Termes IGN] maladie virale
[Termes IGN] médecine humaine
[Termes IGN] secours d'urgence
[Termes IGN] Yunnan (Chine)Résumé : (auteur) COVID-19 poses a major threat to global health care systems, and the recent surge in mortality rates confirms the importance of timely access to care. The capacity of medical service providers is reflected both in the spatial accessibility of medical institutions and in the spatial scope of their services. Therefore, this study aims to investigate the spatial scope of services and spatial accessibility of COVID-19-designated hospitals in Yunnan Province, China. Data are collected from multiple sources and included COVID-19 case data, road data, and data from designated hospitals for COVID-19 in Yunnan Province. The optimal spatial service range for designated hospitals is delineated using a weighted Voronoi diagram that takes into account the number of medical staff and the number of beds in the hospital. Traffic accessibility coefficients are introduced to analyze the spatial accessibility of COVID-19-designated hospitals, and the spatial accessibility of each designated hospital is visualized using the inverse distance weighting interpolation algorithm. The results show the following: (1) COVID-19 cases in Yunnan Province are concentrated in the central and northern regions. The largest single cells in the weighted Voronoi diagram are mainly Pu'er (59168 km2), Honghe (35569 km2), and Baoshan (46795 km2), and the time cost of attainting medical treatment is greater for residents in marginal areas. (2) Within the service space of designated hospitals, 90.24% of patients could obtain medical assistance within 2 h. Those in 52 (36.36%) counties within a municipal jurisdiction could obtain medical services within 2 h, and 76.47% of counties have above-average spatial accessibility. (3) Medical resources in Yunnan Province should be shifted toward the high-risk east-central region and the less spatially accessible in southern and western regions. Numéro de notice : A2022-728 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1943008 Date de publication en ligne : 09/07/2021 En ligne : https://doi.org/10.1080/10106049.2021.1943008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101674
in Geocarto international > vol 37 n° 22 [10/10/2022] . - pp 6519 - 6537[article]Automatic extraction of damaged houses by earthquake based on improved YOLOv5: A case study in Yangbi / Yafei Jing in Remote sensing, vol 14 n° 2 (January-2 2022)
![]()
[article]
Titre : Automatic extraction of damaged houses by earthquake based on improved YOLOv5: A case study in Yangbi Type de document : Article/Communication Auteurs : Yafei Jing, Auteur ; Yuhuan Ren, Auteur ; Yalan Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 382 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] détection d'objet
[Termes IGN] détection de cible
[Termes IGN] détection du bâti
[Termes IGN] dommage matériel
[Termes IGN] extraction automatique
[Termes IGN] image captée par drone
[Termes IGN] orthoimage
[Termes IGN] séisme
[Termes IGN] Yunnan (Chine)Résumé : (auteur) Efficiently and automatically acquiring information on earthquake damage through remote sensing has posed great challenges because the classical methods of detecting houses damaged by destructive earthquakes are often both time consuming and low in accuracy. A series of deep-learning-based techniques have been developed and recent studies have demonstrated their high intelligence for automatic target extraction for natural and remote sensing images. For the detection of small artificial targets, current studies show that You Only Look Once (YOLO) has a good performance in aerial and Unmanned Aerial Vehicle (UAV) images. However, less work has been conducted on the extraction of damaged houses. In this study, we propose a YOLOv5s-ViT-BiFPN-based neural network for the detection of rural houses. Specifically, to enhance the feature information of damaged houses from the global information of the feature map, we introduce the Vision Transformer into the feature extraction network. Furthermore, regarding the scale differences for damaged houses in UAV images due to the changes in flying height, we apply the Bi-Directional Feature Pyramid Network (BiFPN) for multi-scale feature fusion to aggregate features with different resolutions and test the model. We took the 2021 Yangbi earthquake with a surface wave magnitude (Ms) of 6.4 in Yunan, China, as an example; the results show that the proposed model presents a better performance, with the average precision (AP) being increased by 9.31% and 1.23% compared to YOLOv3 and YOLOv5s, respectively, and a detection speed of 80 FPS, which is 2.96 times faster than YOLOv3. In addition, the transferability test for five other areas showed that the average accuracy was 91.23% and the total processing time was 4 min, while 100 min were needed for professional visual interpreters. The experimental results demonstrate that the YOLOv5s-ViT-BiFPN model can automatically detect damaged rural houses due to destructive earthquakes in UAV images with a good performance in terms of accuracy and timeliness, as well as being robust and transferable. Numéro de notice : A2022-104 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14020382 Date de publication en ligne : 14/01/2022 En ligne : https://doi.org/10.3390/rs14020382 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99577
in Remote sensing > vol 14 n° 2 (January-2 2022) . - n° 382[article]Improving LSMA for impervious surface estimation in an urban area / Jin Wang in European journal of remote sensing, vol 55 n° 1 (2022)
![]()
[article]
Titre : Improving LSMA for impervious surface estimation in an urban area Type de document : Article/Communication Auteurs : Jin Wang, Auteur ; Yaolong Zhao, Auteur ; Yingchun Fu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 37 - 51 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] classification et arbre de régression
[Termes IGN] image Landsat-OLI
[Termes IGN] régression
[Termes IGN] signature spectrale
[Termes IGN] surface imperméable
[Termes IGN] Yunnan (Chine)
[Termes IGN] zone urbaineRésumé : (auteur) Linear spectral mixture analysis (LSMA) and regression analysis are the two most conventionally used methods to estimate impervious surfaces at the subpixel scale in an urban area. However, LSMA lacks the sensitivity to pixel brightness, which leads to inter variability of endmembers and affects the ability to distinguish features with a similar spectral signature. This research aims to develop LSMA aided by a regression analysis model to estimate impervious surfaces with higher accuracy. A spectral angle mapping (SAM) based regression analysis model is introduced to reduce errors. Based on high-resolution images and field survey data, the SAM-based regression analysis can estimate non-impervious surface and high-impervious surface densities with high accuracy, while less accurate in impervious surfaces with low/medium density. In contrast, LSMA is able to estimate low/medium-density impervious surfaces with higher accuracy. We propose an improved approach by integrating the two methods, regression analysis aided LSMA, for impervious surface estimation. The proposed method increases the overall accuracy of the impervious surface estimation to 85.24%, which is significantly greater than that of the conventional methods. Numéro de notice : A2022-098 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1080/22797254.2021.2018666 Date de publication en ligne : 05/01/2022 En ligne : https://doi.org/10.1080/22797254.2021.2018666 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99548
in European journal of remote sensing > vol 55 n° 1 (2022) . - pp 37 - 51[article]Validity of historical volunteered geographic information: Evaluating citizen data for mapping historical geographic phenomena / Guiming Zhang in Transactions in GIS, vol 22 n° 1 (February 2018)
![]()
[article]
Titre : Validity of historical volunteered geographic information: Evaluating citizen data for mapping historical geographic phenomena Type de document : Article/Communication Auteurs : Guiming Zhang, Auteur ; A - Xing Zhu, Auteur ; Zhi‐Pang Huang, Auteur ; Guopeng Ren, Auteur ; Cheng‐Zhi Qin, Auteur ; Wen Xiao, Auteur Année de publication : 2018 Article en page(s) : pp 149 - 164 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] cartographie historique
[Termes IGN] distribution spatiale
[Termes IGN] données localisées des bénévoles
[Termes IGN] habitat animal
[Termes IGN] phénomène géographique
[Termes IGN] Simiiformes
[Termes IGN] validité des données
[Termes IGN] Yunnan (Chine)Résumé : (auteur) Studies on volunteered geographic information (VGI) have focused on examining its validity to reveal geographic phenomena in relatively recent periods. Empirical evaluation of the validity of VGI to reveal geographic phenomena in historical periods (e.g., decades ago) is lacking, although such evaluation is desirable for assessing the possibility of broadening the temporal scope of VGI applications. This article presents an evaluation of the validity of VGI to reveal historical geographic phenomena through a citizen data‐based habitat suitability mapping case study. Citizen data (i.e., sightings) of the black‐and‐white snub‐nosed monkey (Rhinopithecus bieti) were elicited from local residents through three‐dimensional (3D) geovisualization interviews in Yunnan, China. The validity of the elicited sightings to reveal the historical R. bieti distribution was evaluated through habitat suitability mapping using the citizen data in historical periods. The results of controlled experiments demonstrated that suitability maps predicted using the historical citizen data had a consistent spatial pattern (correlation above 0.60) that reflects the R. bieti distribution (Boyce index around 0.90) in areas free of significant environmental change across historical periods. This in turn suggests that citizen data have validity for mapping historical geographic phenomena. It provides supporting empirical evidence for potentially broadening the temporal scope of VGI applications. Numéro de notice : A2018-066 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12300 En ligne : https://doi.org/10.1111/tgis.12300 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89422
in Transactions in GIS > vol 22 n° 1 (February 2018) . - pp 149 - 164[article]Forest above ground biomass inversion by fusing GLAS with optical remote sensing data / Xiaohuan Xi in ISPRS International journal of geo-information, vol 5 n° 4 (April 2016)
![]()
[article]
Titre : Forest above ground biomass inversion by fusing GLAS with optical remote sensing data Type de document : Article/Communication Auteurs : Xiaohuan Xi, Auteur ; Tingting Han, Auteur ; Cheng Wang, Auteur ; et al., Auteur Année de publication : 2016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] classification par réseau neuronal
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] données ICEsat
[Termes IGN] forêt
[Termes IGN] hauteur de la végétation
[Termes IGN] image Landsat-TM
[Termes IGN] image optique
[Termes IGN] image Terra-MODIS
[Termes IGN] Leaf Area Index
[Termes IGN] MNS ASTER
[Termes IGN] régression
[Termes IGN] Yunnan (Chine)Résumé : (auteur) Forest biomass is an important parameter for quantifying and understanding biological and physical processes on the Earth’s surface. Rapid, reliable, and objective estimations of forest biomass are essential to terrestrial ecosystem research. The Geoscience Laser Altimeter System (GLAS) produced substantial scientific data for detecting the vegetation structure at the footprint level. This study combined GLAS data with MODIS/BRDF (Bidirectional Reflectance Distribution Function) and ASTER GDEM data to estimate forest aboveground biomass (AGB) in Xishuangbanna, Yunnan Province, China. The GLAS waveform characteristic parameters were extracted using the wavelet method. The ASTER DEM was used to compute the terrain index for reducing the topographic influence on the GLAS canopy height estimation. A neural network method was applied to assimilate the MODIS BRDF data with the canopy heights for estimating continuous forest heights. Forest leaf area indices (LAIs) were derived from Landsat TM imagery. A series of biomass estimation models were developed and validated using regression analyses between field-estimated biomass, canopy height, and LAI. The GLAS-derived canopy heights in Xishuangbanna correlated well with the field-estimated AGB (R2 = 0.61, RMSE = 52.79 Mg/ha). Combining the GLAS estimated canopy heights and LAI yielded a stronger correlation with the field-estimated AGB (R2 = 0.73, RMSE = 38.20 Mg/ha), which indicates that the accuracy of the estimated biomass in complex terrains can be improved significantly by integrating GLAS and optical remote sensing data. Numéro de notice : A2016-820 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi5040045 En ligne : https://doi.org/10.3390/ijgi5040045 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82625
in ISPRS International journal of geo-information > vol 5 n° 4 (April 2016)[article]Land cover dynamics monitoring with Landsat data in Kunming, China: a cost-effective sampling and modelling scheme using Google Earth imagery and random forests / Ning Lu in Geocarto international, vol 30 n° 1 - 2 (January - February 2015)
PermalinkMapping dominant vegetation communities at Meili Snow Mountain, Yunnan Province, China using satellite imagery and plant community data / Z. Zhang in Geocarto international, vol 23 n° 2 (April - May 2008)
Permalink