Descripteur
Documents disponibles dans cette catégorie (128)



Etendre la recherche sur niveau(x) vers le bas
Landslide susceptibility assessment considering spatial agglomeration and dispersion characteristics: A case study of Bijie City in Guizhou Province, China / Kezhen Yao in ISPRS International journal of geo-information, vol 11 n° 5 (May 2022)
![]()
[article]
Titre : Landslide susceptibility assessment considering spatial agglomeration and dispersion characteristics: A case study of Bijie City in Guizhou Province, China Type de document : Article/Communication Auteurs : Kezhen Yao, Auteur ; Saini Yang, Auteur ; Shengnan Wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 269 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] cartographie des risques
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] dispersion
[Termes IGN] effondrement de terrain
[Termes IGN] Extreme Gradient Machine
[Termes IGN] modèle de simulation
[Termes IGN] régression linéaire
[Termes IGN] risque naturel
[Termes IGN] vulnérabilitéRésumé : (auteur) Landslide susceptibility assessment serves as a critical scientific reference for geohazard control, land use, and sustainable development planning. The existing research has not fully considered the potential impact of the spatial agglomeration and dispersion of landslides on assessments. This issue may cause a systematic evaluation bias when the field investigation data are insufficient, which is common due to limited human resources. Accordingly, this paper proposes two novel strategies, including a clustering algorithm and a preprocessing method, for these two ignored features to strengthen assessments, especially in high-susceptibility regions. Multiple machine learning models are compared in a case study of the city of Bijie (Guizhou Province, China). Then we generate the optimal susceptibility map and conduct two experiments to test the validity of the proposed methods. The primary conclusions of this study are as follows: (1) random forest (RF) was superior to other algorithms in the recognition of high-susceptibility areas and the portrayal of local spatial features; (2) the susceptibility map incorporating spatial feature messages showed a noticeable improvement over the spatial distribution and gradual change of susceptibility, as well as the accurate delineation of critical hazardous areas and the interpretation of historical hazards; and (3) the spatial distribution feature had a significant positive effect on modeling, as the accuracy increased by 5% and 10% after including the spatial agglomeration and dispersion consideration in the RF model, respectively. The benefit of the agglomeration is concentrated in high-susceptibility areas, and our work provides insight to improve the assessment accuracy in these areas, which is critical to risk assessment and prevention activities. Numéro de notice : A2022-371 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11050269 Date de publication en ligne : 19/04/2022 En ligne : https://doi.org/10.3390/ijgi11050269 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100613
in ISPRS International journal of geo-information > vol 11 n° 5 (May 2022) . - n° 269[article]Multi-parameter risk mapping of Qazvin aquifer by classic and fuzzy clustering techniques / Saman Javadi in Geocarto international, vol 37 n° 4 (April 2022)
![]()
[article]
Titre : Multi-parameter risk mapping of Qazvin aquifer by classic and fuzzy clustering techniques Type de document : Article/Communication Auteurs : Saman Javadi, Auteur ; Seied Mehdy Hashemy Shahdany, Auteur ; Hashemy Shahdany, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1160-1182 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] aquifère
[Termes IGN] arsenic
[Termes IGN] cartographie des risques
[Termes IGN] contamination
[Termes IGN] eau souterraine
[Termes IGN] Iran
[Termes IGN] logique floue
[Termes IGN] nitrate
[Termes IGN] pollution des eaux
[Termes IGN] vulnérabilitéRésumé : (auteur) This study proposes a new approach to establish a multi-parameter risk mapping method by employing the K-Means clustering technique. Accordingly, spatial assessment of arsenic (As), nitrate (NO3) and total dissolved solids (TDS) were carried out based on the type of land use to estimate contamination potential in an aquifer. Since risk mapping is always associated with the occurrence probability of a phenomenon, pollution occurrence probability was then obtained using the fuzzy C-means clustering. The results reveal that NO3 and As contamination levels increase from the first cluster (C1), covers 22.3% of the aquifer, to C5 encompassing 35.1% of the aquifer devoted to extensive industrial and agricultural activities. Fuzzy clustering results show that the pollution occurrence probability in each aquifer cell varied from less than 30 to more than 90%. Moreover, the results show, industrial and agricultural land uses cover about 70% of the areas with high risk of contamination. Numéro de notice : A2022-396 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1778099 Date de publication en ligne : 23/06/2020 En ligne : https://doi.org/10.1080/10106049.2020.1778099 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100690
in Geocarto international > vol 37 n° 4 (April 2022) . - pp 1160-1182[article]Monitoring coastal vulnerability by using DEMs based on UAV spatial data / Antonio Minervino Amodio in ISPRS International journal of geo-information, vol 11 n° 3 (March 2022)
![]()
[article]
Titre : Monitoring coastal vulnerability by using DEMs based on UAV spatial data Type de document : Article/Communication Auteurs : Antonio Minervino Amodio, Auteur ; Gianluigi Di Paola, Auteur ; Carmen Maria Rosskopf, Auteur Année de publication : 2022 Article en page(s) : n° 155 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Adriatique, mer
[Termes IGN] détection de changement
[Termes IGN] érosion côtière
[Termes IGN] géoréférencement
[Termes IGN] image captée par drone
[Termes IGN] Italie
[Termes IGN] littoral méditerranéen
[Termes IGN] modèle numérique de surface
[Termes IGN] orthophotographie
[Termes IGN] point d'appui
[Termes IGN] structure-from-motion
[Termes IGN] surveillance du littoral
[Termes IGN] trait de côte
[Termes IGN] vulnérabilitéRésumé : (auteur) The use of Unmanned Aerial Vehicles (UAVs) represents a rather innovative, quick, and low-cost methodological approach offering applications in several fields of investigation. The present study illustrates the developed method using Digital Elevation Models (DEMs) based on UAV-derived data for evaluating short-term morphological-topographic changes of the beach system and related implications for coastal vulnerability assessment. UAV surveys were performed during the summers of 2019 and 2020 along a beach stretch affected by erosion, located along the central Adriatic coast. Acquired high-resolution aerial photos were used to generate large-scale DEMs as well as orthophotos of the beach using the Structure from Motion (SfM) image processing tool. Comparison of the generated 2019 and 2020 DEMs highlighted significant morphological changes and a sediment volume loss of about 780 m3 within a surface area of about 4400 m2. Based on 20 m spaced beach profiles derived from the DEMs, a coastal vulnerability assessment was performed using the CVA approach that highlighted some significant variations in the CVA index between 2019 and 2020. Results evidence that UAV surveys provide high-resolution topographic data, suitable for specific beach monitoring activities and the updating of some parameters that enter in the CVA model contributing to its correct application. Numéro de notice : A2022-185 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11030155 Date de publication en ligne : 22/02/2022 En ligne : https://doi.org/10.3390/ijgi11030155 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99895
in ISPRS International journal of geo-information > vol 11 n° 3 (March 2022) . - n° 155[article]Flood susceptibility mapping using meta-heuristic algorithms / Alireza Arabameri in Geomatics, Natural Hazards and Risk, vol 13 n° 1 (2022)
![]()
[article]
Titre : Flood susceptibility mapping using meta-heuristic algorithms Type de document : Article/Communication Auteurs : Alireza Arabameri, Auteur ; Amir Seyed Danesh, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 949 - 974 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme génétique
[Termes IGN] base de données localisées
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] Google Earth
[Termes IGN] inondation
[Termes IGN] Iran
[Termes IGN] optimisation par essaim de particules
[Termes IGN] SAGA GIS
[Termes IGN] séparateur à vaste marge
[Termes IGN] traitement de données localisées
[Termes IGN] vulnérabilité
[Termes IGN] zone à risqueRésumé : (auteur) Flood is a common global natural hazard, and detailed flood susceptibility maps for specific watersheds are important for flood management measures. We compute the flood susceptibility map for the Kaiser watershed in Iran using machine learning models such as support vector machine (SVM), Particle swarm optimization (PSO), and genetic algorithm (GA) along with ensembles (PSO-GA and SVM-GA). The application of such machine learning models in flood susceptibility assessment and mapping is analyzed, and future research suggestions are presented. The model of flood susceptibility model was constructed based on fifteen causatives: slope, slope aspect, elevation, plan curvature, land use, and land cover, normalize differences vegetation index (NDVI), convergence index (CI), topographical wetness index (TWI), topographic positioning Index (TPI), drainage density (DD), distance to stream, terrain ruggedness index (TRI), terrain surface texture (TST), geology and stream power index (SPI) and flood inventory data which later is divided by 70% for training the model and 30% for validated the model. The model output was evaluated through sensitivity, specificity, accuracy, precision, Cohen Kappa, F-score, and receiver operating curve (ROC). The evaluation of flood susceptibility mapping through the receiver operating curve method along with flood density shows robust results from support vector machine (0.839), particle swarm optimization (0.851), genetic algorithm (0.874), SVM-GA (0.886), and PSO-GA (0.902). Compared have done with some methods commonly used in this susceptibility assessment. A high-quality, informative database is essential for the classification of flood types in flood susceptibility mapping that is very important and helpful to improve the model performances. The performance of the ensemble PSO-GA is better than that of the machine learning model, yielding a high degree of accuracy (AUC-0.902%). Our approach, therefore, provides a novel method for flood susceptibility studies in other watersheds. Numéro de notice : A2022-300 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/19475705.2022.2060138 Date de publication en ligne : 11/04/2022 En ligne : https://doi.org/10.1080/19475705.2022.2060138 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100383
in Geomatics, Natural Hazards and Risk > vol 13 n° 1 (2022) . - pp 949 - 974[article]Forest fire susceptibility assessment using google earth engine in Gangwon-do, Republic of Korea / Yong Piao in Geomatics, Natural Hazards and Risk, vol 13 n° 1 (2022)
![]()
[article]
Titre : Forest fire susceptibility assessment using google earth engine in Gangwon-do, Republic of Korea Type de document : Article/Communication Auteurs : Yong Piao, Auteur ; Dongkun Lee, Auteur ; Sangjin Park, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 432 - 450 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] aléa
[Termes IGN] cartographie des risques
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Corée du sud
[Termes IGN] Google Earth Engine
[Termes IGN] incendie de forêt
[Termes IGN] pente
[Termes IGN] risque naturel
[Termes IGN] vulnérabilitéRésumé : (auteur) Forest fires are one of the most frequently occurring natural hazards, causing substantial economic loss and destruction of forest cover. As the Gangwon-do region in Korea has abundant forest resources and ecological diversity as Korea's largest forest area, spatial data on forest fire susceptibility of the region are urgently required. In this study, a forest fire susceptibility map (FFSM) of Gangwon-do was constructed using Google Earth Engine (GEE) and three machine learning algorithms: Classification and Regression Trees (CART), Random Forest (RF), and Boosted Regression Trees (BRT). The factors related to climate, topography, hydrology, and human activity were constructed. To verify the accuracy, the area under the receiver operating characteristic curve (AUC) was used. The AUC values were 0.846 (BRT), 0.835 (RF), 0.751 (CART). Factor importance analysis was performed to identify the important factors of the occurrence of forest fires in Gangwon-do. The results show that the most important factor in the Gangwon-do region is slope. A slope of approximately 17° (moderately steep) has a considerable impact on the occurrence of forest fires. Human activity and interference are the other important factors that affect forest fires. The established FFSM can support future efforts on forest resource protection and environmental management planning in Gangwon-do. Numéro de notice : A2022-445 Affiliation des auteurs : non IGN Nature : Article DOI : 10.1080/19475705.2022.2030808 Date de publication en ligne : 02/02/2022 En ligne : https://doi.org/10.1080/19475705.2022.2030808 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99942
in Geomatics, Natural Hazards and Risk > vol 13 n° 1 (2022) . - pp 432 - 450[article]On the suitability of a unified GIS-BIM-HBIM framework for cataloguing and assessing vulnerability in Historic Urban Landscapes: a critical review / Rafael Ramirez Eudave in International journal of geographical information science IJGIS, vol 35 n° 10 (October 2021)
PermalinkGIS models for vulnerability of coastal erosion assessment in a tropical protected area / Luís Russo Vieira in ISPRS International journal of geo-information, vol 10 n° 9 (September 2021)
PermalinkProtection naturelle contre la submersion, apport de l'intelligence artificielle / Antoine Mury in Cartes & Géomatique, n° 245-246 (septembre - décembre 2021)
PermalinkEstablishing vertical separation models for vulnerable coastlines in developing territories / Cassandra Nanlal in Marine geodesy, vol 44 n° 5 (September 2021)
PermalinkClimate warming predispose sessile oak forests to drought-induced tree mortality regardless of management legacies / Any Mary Petritan in Forest ecology and management, vol 491 (1July 2021)
PermalinkGroundwater vulnerability assessment of the chalk aquifer in the northern part of France / Lahcen Zouhri in Geocarto international, vol 36 n° 11 ([15/06/2021])
PermalinkProvisioning forest and conservation science with high-resolution maps of potential distribution of major European tree species under climate change / Debojyoti Chakraborty in Annals of Forest Science [en ligne], vol 78 n° 2 (June 2021)
PermalinkAre pine-oak mixed stands in Mediterranean mountains more resilient to drought than their monospecific counterparts? / Francisco J. Muñoz-Gálvez in Forest ecology and management, vol 484 ([15/03/2021])
PermalinkEarly detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS) / Langning Huo in Remote sensing of environment, Vol 255 (March 2021)
PermalinkIntegration of an InSAR and ANN for sinkhole susceptibility mapping: A case study from Kirikkale-Delice (Turkey) / Hakan Nefeslioglu in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
Permalink