Descripteur
Documents disponibles dans cette catégorie (144)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Mapping territorial vulnerability to wildfires: A participative multi-criteria analysis / Miguel Rivière in Forest ecology and management, vol 539 (July-1 2023)
[article]
Titre : Mapping territorial vulnerability to wildfires: A participative multi-criteria analysis Type de document : Article/Communication Auteurs : Miguel Rivière, Auteur ; Jonathan Lenglet, Auteur ; Adrien Noirault, Auteur ; et al., Auteur Année de publication : 2023 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] analyse de sensibilité
[Termes IGN] analyse multicritère
[Termes IGN] cartographie des risques
[Termes IGN] incendie de forêt
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] Rhône-Méditerranée-Corse
[Termes IGN] système d'information géographique
[Termes IGN] utilisation du sol
[Termes IGN] vulnérabilitéNuméro de notice : A2023-216 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article DOI : 10.1016/j.foreco.2023.121014 Date de publication en ligne : 22/04/2023 En ligne : https://doi.org/10.1016/j.foreco.2023.121014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103146
in Forest ecology and management > vol 539 (July-1 2023)[article]Flood vulnerability assessment of urban buildings based on integrating high-resolution remote sensing and street view images / Ziyao Xing in Sustainable Cities and Society, vol 92 (May 2023)
[article]
Titre : Flood vulnerability assessment of urban buildings based on integrating high-resolution remote sensing and street view images Type de document : Article/Communication Auteurs : Ziyao Xing, Auteur ; Shuai Yang, Auteur ; Xuli Zan, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104467 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] bâtiment
[Termes IGN] Chine
[Termes IGN] gestion des risques
[Termes IGN] image Streetview
[Termes IGN] inondation
[Termes IGN] milieu urbain
[Termes IGN] planification urbaine
[Termes IGN] Quickbird
[Termes IGN] segmentation sémantique
[Termes IGN] vulnérabilitéRésumé : (auteur) Urban flood risk management requires an extensive investigation of the vulnerability characteristics of buildings. Large-scale field surveys usually cost a lot of time and money, while satellite remote sensing and street view images can provide information on the tops and facades of buildings respectively. Thereupon, this paper develops a building vulnerability assessment framework using remote sensing and street view features. Specifically, a UNet-based semantic segmentation model, FSA-UNet (Fusion-Self-Attention-UNet) is proposed to integrate remote sensing and street view features and the vulnerability information contained in the images is fully exploited. And the building vulnerability index is generated to provide the spatial distribution characteristics of urban building vulnerability. The experiment shows that the mIoU of the proposed model can reach 82% for building vulnerability classification in Hefei, China, which is more accurate than the traditional semantic segmentation models. The results indicate that the integration of street view and remote sensing image features can improve the ability of building vulnerability assessment, and the model proposed in this study can better capture the correlation features of multi-angle images through the self-attention mechanism and combines hierarchy features and edge information to improve the classification effect. This study can support for disaster management and urban planning. Numéro de notice : A2023-152 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scs.2023.104467 Date de publication en ligne : 23/02/2023 En ligne : https://doi.org/10.1016/j.scs.2023.104467 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102826
in Sustainable Cities and Society > vol 92 (May 2023) . - n° 104467[article]A GIS-based flood risk mapping of Assam, India, using the MCDA-AHP approach at the regional and administrative level / Laxmi Gupta in Journal of maps, vol 18 n° 2 (February 2023)
[article]
Titre : A GIS-based flood risk mapping of Assam, India, using the MCDA-AHP approach at the regional and administrative level Type de document : Article/Communication Auteurs : Laxmi Gupta, Auteur ; Jagabandhu Dixit, Auteur Année de publication : 2023 Article en page(s) : 33 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse multicritère
[Termes IGN] cartographie des risques
[Termes IGN] eau de surface
[Termes IGN] Inde
[Termes IGN] inondation
[Termes IGN] planification
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] ruissellement
[Termes IGN] système d'information géographique
[Termes IGN] vulnérabilitéRésumé : (auteur) Floods are frequently occurring events in the Assam region due to the presence of the Brahmaputra River and the heavy monsoon period. An efficient and reliable methodology is utilized to prepare a GIS-based flood risk map for the Assam region, India. At the regional and administrative level, the flood hazard index (FHI), flood vulnerability index (FVI), and flood risk index (FRI) are developed using multi-criteria decision analysis (MCDA) – analytical hierarchy process (AHP). The selected indicators define the topographical, geological, meteorological, drainage characteristics, land use land cover, and demographical features of Assam. The results show that more than 70%, 57.37%, and 50% of the total area lie in moderate to very high FHI, FVI, and FRI classes, respectively. The proposed methodology can be applied to identify high flood risk zones and to carry out effective flood risk management and mitigation strategies in vulnerable areas. Numéro de notice : A2023-054 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2060329 Date de publication en ligne : 19/04/2022 En ligne : https://doi.org/10.1080/10106049.2022.2060329 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102387
in Journal of maps > vol 18 n° 2 (February 2023) . - 33 p.[article]Prescribed fire after thinning increased resistance of sub-Mediterranean pine forests to drought events and wildfires / Lena Vilà-Vilardell in Forest ecology and management, vol 527 (January-1 2023)
[article]
Titre : Prescribed fire after thinning increased resistance of sub-Mediterranean pine forests to drought events and wildfires Type de document : Article/Communication Auteurs : Lena Vilà-Vilardell, Auteur ; Miquel De Cáceres, Auteur ; Míriam Piqué, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 120602 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] brûlis
[Termes IGN] éclaircie (sylviculture)
[Termes IGN] incendie de forêt
[Termes IGN] Pinus nigra
[Termes IGN] sécheresse
[Termes IGN] sous-étage
[Termes IGN] stress hydrique
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] vulnérabilité
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Vegetation structure affects the vulnerability of a forest to drought events and wildfires. Management decisions, such as thinning intensity and type of understory treatment, influence competition for water resources and amount of fuel available. While heavy thinning effectively reduces tree water stress and intensity of a crown fire, the duration of these benefits may be limited by a fast growth response of the understory. Our aim was to study the effect of forest structure on pine forests vulnerability to extreme drought events and on the potential wildfire behaviour after management, with a special focus on the role of the understory. In three sub-Mediterranean sites of NE Spain dominated by Pinus nigra, two intensities of thinning (light: aiming at 70–75% canopy cover; and heavy: aiming at 50–60% canopy cover) followed by two understory treatments (mechanical only and mechanical plus prescribed burning) were applied, resulting in four differently managed stands plus an untreated control per site. Four to five years after management, we measured forest structure (overstory in one 314 m2 circular plot and understory in 20 quadrats of 1 m2 per treatment unit) and fuel load (in two 10 m transects per treatment unit) and simulated water balance and fire behaviour under extreme weather conditions. Understory contribution was assessed comparing the real structure with a virtual forest stand where understory vegetation equalled the one of the untreated control. Our results suggest that the resulting mid-term structure following treatments effectively reduced water stress and fire behaviour compared with untreated control, and that the most effective treatments were the ones where prescribed burning was applied after light or heavy thinning. While understory clearing contributes to increase the resistance to both disturbances, an additive effect of burning the debris reduced the vulnerability to drought and wildfires after treatments. Our study highlights the importance of managing the understory to further increase forest resistance to both disturbances. Numéro de notice : A2023-030 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120602 Date de publication en ligne : 08/11/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120602 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102109
in Forest ecology and management > vol 527 (January-1 2023) . - n° 120602[article]Graph neural networks with constraints of environmental consistency for landslide susceptibility evaluation / Haowei Zeng in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)
[article]
Titre : Graph neural networks with constraints of environmental consistency for landslide susceptibility evaluation Type de document : Article/Communication Auteurs : Haowei Zeng, Auteur ; Qing Zhu, Auteur ; Yulin Ding, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] aléa
[Termes IGN] cartographie des risques
[Termes IGN] cohérence des données
[Termes IGN] effondrement de terrain
[Termes IGN] prédiction
[Termes IGN] programmation par contraintes
[Termes IGN] réseau neuronal de graphes
[Termes IGN] vulnérabilitéRésumé : (auteur) In complex and heterogeneous geoenvironments, landslides exhibit varying features in different environments, and data in landslide inventories are imbalanced. Existing data-driven landslide susceptibility evaluation (LSE) methods overlook environmental heterogeneity and cannot reliably predict regions with few samples. Alternatively, global random negative sampling strategies may produce imbalanced positive and negative samples in some environments, contributing to inaccurate predictions. This article proposes a graph neural network (GNN) constrained by environmental consistency (GNN-EC) to overcome these problems. The GNN-EC consists of graphs with nodes, and edges. A graph represents the environmental relationships in the study area. Nodes are geographic units delineated from terrain polygon approximation. Edges capture the relationships between node-pairs. Additionally, the weights of edges reflect the similarity between two node environments. A GNN aggregates node information in the graph for LSE. Our experiment showed that the proposed method outperformed the common machine learning methods: increasing prediction accuracy by approximately 7, 5–6 and 3–4% compared to the artificial neural network (ANN), the support vector machine (SVM) and the random forest (RF), respectively. Moreover, our method can maintain high prediction accuracy, even with a small training set. Numéro de notice : A2022-626 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2103819 Date de publication en ligne : 28/07/2022 En ligne : https://doi.org/10.1080/13658816.2022.2103819 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101396
in International journal of geographical information science IJGIS > vol 36 n° 11 (November 2022)[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022111 SL Revue Centre de documentation Revues en salle Disponible Modelling and accessing land degradation vulnerability using remote sensing techniques and the analytical hierarchy process approach / Abebe Debele Tolche in Geocarto international, vol 37 n° 24 ([20/10/2022])PermalinkFlash-flood hazard susceptibility mapping in Kangsabati River Basin, India / Rabin Chakrabortty in Geocarto international, vol 37 n° 23 ([15/10/2022])PermalinkModelling the future vulnerability of urban green space for priority-based management and green prosperity strategy planning in Kolkata, India: a PSR-based analysis using AHP-FCE and ANN-Markov model / Santanu Dinda in Geocarto international, vol 37 n° 22 ([10/10/2022])PermalinkA comparative assessment of modeling groundwater vulnerability using DRASTIC method from GIS and a novel classification method using machine learning classifiers / Qasim Khan in Geocarto international, vol 37 n° 20 ([20/09/2022])PermalinkIncreasing and widespread vulnerability of intact tropical rainforests to repeated droughts / Shengli Tao in Proceedings of the National Academy of Sciences of the United States of America PNAS, vol 119 n° 37 (2022)PermalinkFlood vulnerability and buildings’ flood exposure assessment in a densely urbanised city: comparative analysis of three scenarios using a neural network approach / Quoc Bao Pham in Natural Hazards, vol 113 n° 2 (September 2022)PermalinkMeasuring COVID-19 vulnerability for Northeast Brazilian municipalities: Social, economic, and demographic factors based on multiple criteria and spatial analysis / Ciro José Jardim De Figueiredo in ISPRS International journal of geo-information, vol 11 n° 8 (August 2022)PermalinkComment déterminer l'exposition aux changements climatiques des zones de production forestière française ? Méthodologie utilisée dans le projet ESPERENSE pour cibler les zones d’intérêt pour l’installation d’essais de comparaison d’essences et de provenances / Hedi Kebli in Revue forestière française, vol 73 n° 5 (2021)PermalinkLandslide susceptibility assessment considering spatial agglomeration and dispersion characteristics: A case study of Bijie City in Guizhou Province, China / Kezhen Yao in ISPRS International journal of geo-information, vol 11 n° 5 (May 2022)PermalinkMonitoring coastal vulnerability by using DEMs based on UAV spatial data / Antonio Minervino Amodio in ISPRS International journal of geo-information, vol 11 n° 3 (March 2022)Permalink