Descripteur
Termes IGN > sciences humaines et sociales > vie des organisations > gestion des risques
gestion des risquesVoir aussi |
Documents disponibles dans cette catégorie (828)


Etendre la recherche sur niveau(x) vers le bas
Cliff change detection using siamese KPCONV deep network on 3D point clouds / Iris de Gelis in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
![]()
[article]
Titre : Cliff change detection using siamese KPCONV deep network on 3D point clouds Type de document : Article/Communication Auteurs : Iris de Gelis, Auteur ; Zoé Bessin, Auteur ; Pauline Letortu, Auteur ; Marion Jaud, Auteur ; C. Delacourt, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 649 - 656 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] érosion côtière
[Termes IGN] falaise
[Termes IGN] semis de points
[Termes IGN] surveillance géologiqueMots-clés libres : KPConv = Kernel Point Convolution Résumé : (auteur) Mainly depending on their lithology, coastal cliffs are prone to changes due to erosion. This erosion could increase due to climate change leading to potential threats for coastal users, assets, or infrastructure. Thus, it is important to be able to understand and characterize cliff face changes at fine scale. Usually, monitoring is conducted thanks to distance computation and manual analysis of each cliff face over 3D point clouds to be able to study 3D dynamics of cliffs. This is time consuming and inclined to each one judgment in particular when dealing with 3D point clouds data. Indeed, 3D point clouds characteristics (sparsity, impossibility of working on a classical top view representation, volume of data, …) make their processing harder than 2D images. Last decades, an increase of performance of machine learning methods for earth observation purposes has been performed. To the best of our knowledge, deep learning has never been used for 3D change detection and categorization in coastal cliffs. Lately, Siamese KPConv brings successful results for change detection and categorization into 3D point clouds in urban area. Although the case study is different by its more random characteristics and its complex geometry, we demonstrate here that this method also allows to extract and categorize changes on coastal cliff face. Results over the study area of Petit Ailly cliffs in Varengeville-sur-Mer (France) are very promising qualitatively as well as quantitatively: erosion is retrieved with an intersection over union score of 83.86 %. Numéro de notice : A2022-444 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-3-2022-649-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-3-2022-649-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100779
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-3-2022 (2022 edition) . - pp 649 - 656[article]A voxel-based method for the three-dimensional modelling of heathland from lidar point clouds: first results / N. Homainejad in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
![]()
[article]
Titre : A voxel-based method for the three-dimensional modelling of heathland from lidar point clouds: first results Type de document : Article/Communication Auteurs : N. Homainejad, Auteur ; Sisi Zlatanova, Auteur ; Norbert Pfeifer, Auteur Année de publication : 2022 Article en page(s) : pp 697 - 704 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] classification par nuées dynamiques
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] incendie de forêt
[Termes IGN] lande
[Termes IGN] modélisation 3D
[Termes IGN] Nouvelle-Galles du Sud
[Termes IGN] segmentation en régions
[Termes IGN] semis de points
[Termes IGN] voxelRésumé : (auteur) Bushfires are an intrinsic part of the New South Wales’ (NSW) environment in Australia, especially in the Blue Mountains region (11400km2), that is dominated by fire prone vegetation that includes heathland. Many of the Australian native plants in this region are fire-prone and combustible, and many species even require fire to regenerate. The classification of the lateral and vertical distribution of living vegetation is necessary to manage the complexity of bushfires. Currently, interpretation of aerial and satellite images is the prevalent method for the classification of vegetation in NSW. The result does not represent important vegetation structural attributes, such as vegetation height, subcanopy height, and destiny. This paper presents an automated method for the three-dimensional modelling of heathland and important heathland parameters, such as heath shrub height and continuity, and sparse tree and mallee height and density in support of bushfire behaviour modelling. For this study airborne lidar point clouds with a density of 120 points per square meter are used. For the processing and modelling the study is divided into a point cloud processing phase and a voxel-based modelling phase. The point cloud processing phase consists of the normalisation of the height and extraction of the above ground vegetation, while the voxel phase consists of seeded region growing for segmentation, and K-means clustering for the classification of the vegetation into three different canopy layers: a) heath shrubs, b) sparse trees and mallee, c) tall trees. Numéro de notice : A2022-436 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.5194/isprs-annals-V-3-2022-697-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-3-2022-697-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100783
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-3-2022 (2022 edition) . - pp 697 - 704[article]Deep mass redistribution prior to the 2010 Mw 8.8 Maule (Chile) Earthquake revealed by GRACE satellite gravity / Marie Bouih in Earth and planetary science letters, vol 584 (15 April 2022)
![]()
[article]
Titre : Deep mass redistribution prior to the 2010 Mw 8.8 Maule (Chile) Earthquake revealed by GRACE satellite gravity Type de document : Article/Communication Auteurs : Marie Bouih , Auteur ; Isabelle Panet
, Auteur ; Dominique Remy, Auteur ; Laurent Longuevergne, Auteur ; Sylvain Bonvalot, Auteur
Année de publication : 2022 Projets : Université de Paris / Clerici, Christine Article en page(s) : n° 117465 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] Chili
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données GRACE
[Termes IGN] gradient de gravitation
[Termes IGN] jeu de données
[Termes IGN] levé gravimétrique
[Termes IGN] prévention des risques
[Termes IGN] risque naturel
[Termes IGN] séisme
[Termes IGN] signal
[Termes IGN] subduction
[Termes IGN] tectonique des plaquesRésumé : (auteur) Subduction zones megathrust faults constitute a considerable hazard as they produce most of the world's largest earthquakes. However, the role in megathrust earthquake generation exerted by deeper subduction processes remains poorly understood. Here, we analyze the 2003 – 2014 space-time variations of the Earth's gravity gradients derived from three datasets of GRACE geoid models over a large region surrounding the rupture zone of the Mw 8.8 Maule earthquake. In all these datasets, our analysis reveals a large-amplitude gravity gradient signal, progressively increasing in the three months before the earthquake, North of the epicentral area. We show that such signals are equivalent to a water storage decrease over 2 months and cannot be explained by hydrological sources nor artefacts, but rather find origin from mass redistributions within the solid Earth on the continental side of the subduction zone. These gravity gradient variations could be explained by an extensional deformation of the slab around 150-km depth along the Nazca Plate subduction direction, associated with large-scale fluid release. Furthermore, the lateral migration of the gravity signal towards the surface from a low coupling segment around North to the high coupling one in the South suggests that the Mw 8.8 earthquake may have originated from the propagation up to the trench of this deeper slab deformation. Our results highlight the importance of observations of the Earth's time-varying gravity field from satellites in order to probe slow mass redistributions in-depth major plate boundaries and provide new information on dynamic processes in the subduction system, essential to better understand the seismic cycle as a whole. Numéro de notice : A2022-280 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.epsl.2022.117465 En ligne : https://doi.org/10.1016/j.epsl.2022.117465 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100288
in Earth and planetary science letters > vol 584 (15 April 2022) . - n° 117465[article]Determination of building flood risk maps from LiDAR mobile mapping data / Yu Feng in Computers, Environment and Urban Systems, vol 93 (April 2022)
![]()
[article]
Titre : Determination of building flood risk maps from LiDAR mobile mapping data Type de document : Article/Communication Auteurs : Yu Feng, Auteur ; Qing Xiao, Auteur ; Claus Brenner, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101759 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] bâtiment
[Termes IGN] cartographie d'urgence
[Termes IGN] cartographie des risques
[Termes IGN] classification semi-dirigée
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] façade
[Termes IGN] infiltration
[Termes IGN] inondation
[Termes IGN] modèle de simulation
[Termes IGN] prévention des risques
[Termes IGN] risque naturel
[Termes IGN] segmentation sémantiqueRésumé : (auteur) With increasing urbanization, flooding is a major challenge for many cities today. Based on forecast precipitation, topography, and pipe networks, flood simulations can provide early warnings for areas and buildings at risk of flooding. Basement windows, doors, and underground garage entrances are common places where floodwater can flow into a building. Some buildings have been prepared or designed considering the threat of flooding, but others have not. Therefore, knowing the heights of these facade openings helps to identify places that are more susceptible to water ingress. However, such data is not yet readily available in most cities. Traditional surveying of the desired targets may be used, but this is a very time-consuming and laborious process. Instead, mobile mapping using LiDAR (light detection and ranging) is an efficient tool to obtain a large amount of high-density 3D measurement data. To use this method, it is required to extract the desired facade openings from the data in a fully automatic manner. This research presents a new process for the extraction of windows and doors from LiDAR mobile mapping data. Deep learning object detection models are trained to identify these objects. Usually, this requires to provide large amounts of manual annotations.
In this paper, we mitigate this problem by leveraging a rule-based method. In a first step, the rule-based method is used to generate pseudo-labels. A semi-supervised learning strategy is then applied with three different levels of supervision. The results show that using only automatically generated pseudo-labels, the learning-based model outperforms the rule-based approach by 14.6% in terms of F1-score. After five hours of human supervision, it is possible to improve the model by another 6.2%. By comparing the detected facade openings' heights with the predicted water levels from a flood simulation model, a map can be produced which assigns per-building flood risk levels. Thus, our research provides a new geographic information layer for fine-grained urban emergency response. This information can be combined with flood forecasting to provide a more targeted disaster prevention guide for the city's infrastructure and residential buildings. To the best of our knowledge, this work is the first attempt to achieve such a large scale, fine-grained building flood risk mapping.Numéro de notice : A2022-196 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101759 Date de publication en ligne : 01/02/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101759 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99964
in Computers, Environment and Urban Systems > vol 93 (April 2022) . - n° 101759[article]Flood mapping using multi-temporal Sentinel-1 SAR images: A case study—Inaouene watershed from Northeast of Morocco / Brahim Benzougagh in Iranian Journal of Science and Technology - Transactions of Civil Engineering, vol 46 n° 2 (April 2022)
![]()
[article]
Titre : Flood mapping using multi-temporal Sentinel-1 SAR images: A case study—Inaouene watershed from Northeast of Morocco Type de document : Article/Communication Auteurs : Brahim Benzougagh, Auteur ; Pierre-Louis Frison , Auteur ; Sarita Gajbhiye Meshram, Auteur ; Larbi Boudad, Auteur ; Abdallah Dridri, Auteur ; Driss Sadkaoui, Auteur ; Khalid Mimich, Auteur ; Khaled Mohamed Khedher, Auteur
Année de publication : 2022 Projets : 3-projet - voir note / Clerici, Christine Article en page(s) : pp 1481 - 1490 Note générale : bibliographie
This research work was supported by the Deanship of Scientific Research at King Khalid University under Grant number RGP. 2/173/42.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bassin hydrographique
[Termes IGN] cartographie des risques
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] inondation
[Termes IGN] Maroc
[Termes IGN] plan de prévention des risques
[Termes IGN] prévention des risques
[Termes IGN] risque naturelRésumé : (auteur) Natural disasters like floods are happening worldwide. Due to their negative impact on different social, economic and environmental aspects need to monitor and map these phenomena have increased. In fact, to access the zones affected by the flood, we use open source remote sensing (RS) images acquired by optical and radar sensors. Furthermore, we present a method using Sentinel-1 images; we suggest applying Ground Range Detected (GRD) images. For this purpose, pre-processed built and provided by the European Space Agency (ESA), preserved by free software Sentinel Application Platform (SNAP) for data extraction around appropriate demand. Moreover, the principal objective of this article is to assess the capability of Sentinel-1 Synthetic Aperture Radar (SAR) images in order to visualize flood areas in the Inaouene watershed located in north-eastern of Morocco. The origin of this natural hazard is the combination of natural and anthropogenic factors that makes the watershed vulnerable with a sub-annual frequency. The results of this work help decision-makers and managers in the field of natural risk management and land-use planning to implement a strategy and action plan for the protection of the populations and the environment against the negative impact of floods. Numéro de notice : A2022-580 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.1007/s40996-021-00683-y Date de publication en ligne : 18/06/2021 En ligne : https://doi.org/10.1007/s40996-021-00683-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99581
in Iranian Journal of Science and Technology - Transactions of Civil Engineering > vol 46 n° 2 (April 2022) . - pp 1481 - 1490[article]Natural disturbances risks in European boreal and temperate forests and their links to climate change : A review of modelling approaches / Joyce Machado Nunes Romeiro in Forest ecology and management, vol 509 (April-1 2022)
PermalinkEarly warning of COVID-19 hotspots using human mobility and web search query data / Takahiro Yabe in Computers, Environment and Urban Systems, vol 92 (March 2022)
PermalinkFlood monitoring by integration of remote sensing technique and multi-criteria decision making method / Hadi Farhadi in Computers & geosciences, vol 160 (March 2022)
PermalinkA national fuel type mapping method improvement using sentinel-2 satellite data / Alexandra Stefanidou in Geocarto international, vol 37 n° 4 ([15/02/2022])
PermalinkScorch height and volume modeling in prescribed fires: Effects of canopy gaps in Pinus pinaster stands in Southern Europe / J.R. Molina in Forest ecology and management, vol 506 (February-15 2022)
PermalinkSimulating fire-safe cities using a machine learning-based algorithm for the complex urban forms of developing nations: a case of Mumbai India / Vaibhav Kumar in Geocarto international, vol 37 n° 4 ([15/02/2022])
PermalinkPermalinkDevelopment of earth observational diagnostic drought prediction model for regional error calibration: A case study on agricultural drought in Kyrgyzstan / Eunbeen Park in GIScience and remote sensing, vol 59 n° 1 (2022)
PermalinkMapping burn severity in the western Italian Alps through phenologically coherent reflectance composites derived from Sentinel-2 imagery / Donato Morresi in Remote sensing of environment, vol 269 (February 2022)
PermalinkMulti-method monitoring of rockfall activity along the classic route up Mont Blanc (4809 m a.s.l.) to encourage adaptation by mountaineers / Jacques Mourey in Natural Hazards and Earth System Sciences, vol 22 n° 2 (February 2022)
Permalink