Descripteur
Documents disponibles dans cette catégorie (164)



Etendre la recherche sur niveau(x) vers le bas
Georeferencing accuracy assessment of historical aerial photos using a custom-built online georeferencing tool / Su Zhang in ISPRS International journal of geo-information, vol 11 n° 12 (December 2022)
![]()
[article]
Titre : Georeferencing accuracy assessment of historical aerial photos using a custom-built online georeferencing tool Type de document : Article/Communication Auteurs : Su Zhang, Auteur ; Hays A. Barrett, Auteur ; Shirley V. Baros, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 582 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] application web
[Termes IGN] ArcGIS
[Termes IGN] ArcMap
[Termes IGN] géoréférencement indirect
[Termes IGN] image ancienne
[Termes IGN] photographie aérienne
[Termes IGN] point d'appui
[Termes IGN] précision du positionnement
[Termes IGN] standard OGCRésumé : (auteur) As one of the earliest forms of remote sensing, aerial photography has been regarded as an important part of the mapmaking process. Aerial photos, especially historical aerial photos, provide significant amount of valuable information for many applications and fields. However, due to limited funding support, most historical aerial photos have not been digitized and georeferenced yet, which substantially limits their utility for today’s computer-based image processing and analysis. Traditionally, historical aerial photos are georeferenced with desktop GIS software applications. However, this method is expensive, time-consuming, and labor-intensive. To address these limitations, this research developed a custom-built online georeferencing tool to enable georeferencing digitized historical aerial photos in a web environment, which is able to georeference historical aerial photos in a rapid and cost-effective manner. To evaluate the georeferencing performance, a set of 50 historical aerial photos were georeferenced with not only the developed online georeferencing tool but also two commercial desktop software programs. Research results revealed the custom-built online georeferencing tool provided the highest degree of accuracy while maximizing its accessibility. Numéro de notice : A2022-860 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/ijgi11120582 Date de publication en ligne : 22/11/2022 En ligne : https://doi.org/10.3390/ijgi11120582 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102177
in ISPRS International journal of geo-information > vol 11 n° 12 (December 2022) . - n° 582[article]Enriching the metadata of map images: a deep learning approach with GIS-based data augmentation / Yingjie Hu in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
![]()
[article]
Titre : Enriching the metadata of map images: a deep learning approach with GIS-based data augmentation Type de document : Article/Communication Auteurs : Yingjie Hu, Auteur ; Zhipeng Gui, Auteur ; Jimin Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 799 - 821 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] descripteur
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] image cartographique
[Termes IGN] métadonnées
[Termes IGN] projection
[Termes IGN] système d'information géographique
[Termes IGN] Web Map Service
[Termes IGN] web mappingRésumé : (auteur) Maps in the form of digital images are widely available in geoportals, Web pages, and other data sources. The metadata of map images, such as spatial extents and place names, are critical for their indexing and searching. However, many map images have either mismatched metadata or no metadata at all. Recent developments in deep learning offer new possibilities for enriching the metadata of map images via image-based information extraction. One major challenge of using deep learning models is that they often require large amounts of training data that have to be manually labeled. To address this challenge, this paper presents a deep learning approach with GIS-based data augmentation that can automatically generate labeled training map images from shapefiles using GIS operations. We utilize such an approach to enrich the metadata of map images by adding spatial extents and place names extracted from map images. We evaluate this GIS-based data augmentation approach by using it to train multiple deep learning models and testing them on two different datasets: a Web Map Service image dataset at the continental scale and an online map image dataset at the state scale. We then discuss the advantages and limitations of the proposed approach. Numéro de notice : A2022-258 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.1080/13658816.2021.1968407 En ligne : https://doi.org/10.1080/13658816.2021.1968407 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100231
in International journal of geographical information science IJGIS > vol 36 n° 4 (April 2022) . - pp 799 - 821[article]Multilevel modeling of geographic information systems based on international standards / Suilen H. Alvarado in Software and Systems Modeling, vol 21 n° 2 (April 2022)
![]()
[article]
Titre : Multilevel modeling of geographic information systems based on international standards Type de document : Article/Communication Auteurs : Suilen H. Alvarado, Auteur ; Alejandro Cortiñas, Auteur ; Miguel R. Luaces, Auteur ; Oscar Pedreira, Auteur ; Angeles S. Places, Auteur Année de publication : 2022 Article en page(s) : pp 623 - 666 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] architecture orientée modèle
[Termes IGN] métamodèle
[Termes IGN] standard OGC
[Termes IGN] système d'information géographiqueRésumé : (auteur) Even though different applications based on Geographic Information Systems (GIS) provide different features and functions, they all share a set of common concepts (e.g., spatial data types, operations, services), a common architecture, and a common set of technologies. Furthermore, common structures appear repeatedly in different GIS, although they have to be specialized in specific application domains. Multilevel modeling is an approach to model-driven engineering (MDE) in which the number of metamodel levels is not fixed. This approach aims at solving the limitations of a two-level metamodeling approach, which forces the designer to include all the metamodel elements at the same level. In this paper, we address the application of multilevel modeling to the domain of GIS, and we evaluate its potential benefits. Although we do not present a complete set of models, we present four representative scenarios supported by example models. One of them is based on the standards defined by ISO TC/211 and the Open Geospatial Consortium. The other three are based on the EU INSPIRE Directive (territory administration, spatial networks, and facility management). These scenarios show that multilevel modeling can provide more benefits to GIS modeling than a two-level metamodeling approach. Numéro de notice : A2022-330 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10270-021-00901-1 Date de publication en ligne : 02/07/2021 En ligne : https://doi.org/10.1007/s10270-021-00901-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100605
in Software and Systems Modeling > vol 21 n° 2 (April 2022) . - pp 623 - 666[article]Automated 3D reconstruction of LoD2 and LoD1 models for All 10 million buildings of the Netherlands / Ravi Peters in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)
![]()
[article]
Titre : Automated 3D reconstruction of LoD2 and LoD1 models for All 10 million buildings of the Netherlands Type de document : Article/Communication Auteurs : Ravi Peters, Auteur ; Balazs Dukai, Auteur ; Stelios Vitalis, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 165 - 170 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] données lidar
[Termes IGN] empreinte
[Termes IGN] itération
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] niveau de détail
[Termes IGN] Pays-Bas
[Termes IGN] qualité des données
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] toit
[Termes IGN] Web Map Tile ServiceRésumé : (auteur) In this paper, we present our workflow to automatically reconstruct three-dimensional (3D) building models based on two-dimensional building polygons and a lidar point cloud. The workflow generates models at different levels of detail (LoDs) to support data requirements of different applications from one consistent source. Specific attention has been paid to make the workflow robust to quickly run a new iteration in case of improvements in an algorithm or in case new input data become available. The quality of the reconstructed data highly depends on the quality of the input data and is monitored in several steps of the process. A 3D viewer has been developed to view and download the openly available 3D data at different LoDs in different formats. The workflow has been applied to all 10 million buildings of the Netherlands. The 3D service will be updated after new input data becomes available. Numéro de notice : A2022-200 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00032R2 Date de publication en ligne : 01/03/2022 En ligne : https://doi.org/10.14358/PERS.21-00032R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100002
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 3 (March 2022) . - pp 165 - 170[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022031 SL Revue Centre de documentation Revues en salle Disponible Automatic extraction of indoor spatial information from floor plan image: A patch-based deep learning methodology application on large-scale complex buildings / Hyunjung Kim in ISPRS International journal of geo-information, vol 10 n° 12 (December 2021)
![]()
[article]
Titre : Automatic extraction of indoor spatial information from floor plan image: A patch-based deep learning methodology application on large-scale complex buildings Type de document : Article/Communication Auteurs : Hyunjung Kim, Auteur ; Seongyong Kim, Auteur ; Kiyun Yu, Auteur Année de publication : 2021 Article en page(s) : n° 828 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage profond
[Termes IGN] bâtiment
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] indoorGML
[Termes IGN] positionnement en intérieur
[Termes IGN] reconstruction 3D du bâtiRésumé : (auteur) Automatic floor plan analysis has gained increased attention in recent research. However, numerous studies related to this area are mainly experiments conducted with a simplified floor plan dataset with low resolution and a small housing scale due to the suitability for a data-driven model. For practical use, it is necessary to focus more on large-scale complex buildings to utilize indoor structures, such as reconstructing multi-use buildings for indoor navigation. This study aimed to build a framework using CNN (Convolution Neural Networks) for analyzing a floor plan with various scales of complex buildings. By dividing a floor plan into a set of normalized patches, the framework enables the proposed CNN model to process varied scale or high-resolution inputs, which is a barrier for existing methods. The model detected building objects per patch and assembled them into one result by multiplying the corresponding translation matrix. Finally, the detected building objects were vectorized, considering their compatibility in 3D modeling. As a result, our framework exhibited similar performance in detection rate (87.77%) and recognition accuracy (85.53%) to that of existing studies, despite the complexity of the data used. Through our study, the practical aspects of automatic floor plan analysis can be expanded. Numéro de notice : A2021-926 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10120828 Date de publication en ligne : 10/12/2021 En ligne : https://doi.org/10.3390/ijgi10120828 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99289
in ISPRS International journal of geo-information > vol 10 n° 12 (December 2021) . - n° 828[article]A framework for ecosystem service assessment using GIS interoperability standards / Martin Lacayo in Computers & geosciences, vol 154 (September 2021)
PermalinkIndoor space as the basis for modelling of buildings in a 3D Cadastre / Jernej Tekavec in Survey review, Vol 53 n° 380 (September 2021)
PermalinkDesign and development 3D RRR model for Turkish cadastral system using international standards / Mehmet Alkan in Survey review, Vol 53 n° 379 (July 2021)
PermalinkLa géovisualisation de données massives sur le Web : entre avancées technologiques et évolutions cartographiques / Boris Mericskay in Mappemonde, n° 131 (juillet 2021)
PermalinkMethod for generation of indoor GIS models based on BIM models to support adjacent analysis of indoor spaces / Qingxiang Chen in ISPRS International journal of geo-information, vol 9 n° 9 (September 2020)
PermalinkA semantic graph database for the interoperability of 3D GIS data / Eva Savina Malinverni in Applied geomatics, vol 12 n° 3 (September 2020)
PermalinkA review of techniques for 3D reconstruction of indoor environments / Zhizhong Kang in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)
PermalinkToward a standardized encoding of remote sensing geo-positioning sensor models / Meng Jin in Remote sensing, vol 12 n° 9 (May 2020)
PermalinkIFC schemas in ISO/TC 211 compliant UML for improved interoperability between BIM and GIS / Knut Jetlund in ISPRS International journal of geo-information, vol 9 n° 4 (April 2020)
PermalinkDesigning multi-scale maps: lessons learned from existing practices / Marion Dumont in International journal of cartography, Vol 6 n° 1 (March 2020)
Permalink