Descripteur
Documents disponibles dans cette catégorie (58)



Etendre la recherche sur niveau(x) vers le bas
Semantic segmentation of high-resolution remote sensing images based on a class feature attention mechanism fused with Deeplabv3+ / Zhimin Wang in Computers & geosciences, vol 158 (January 2022)
![]()
[article]
Titre : Semantic segmentation of high-resolution remote sensing images based on a class feature attention mechanism fused with Deeplabv3+ Type de document : Article/Communication Auteurs : Zhimin Wang, Auteur ; Jiasheng Wang, Auteur ; Kun Yang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104969 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classe sémantique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image à haute résolution
[Termes IGN] image Gaofen
[Termes IGN] raisonnement sémantique
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Aiming at solving the problems of inaccurate segmentation of edge targets, inconsistent segmentation of different types of targets, and slow prediction efficiency on semantic segmentation of high-resolution remote sensing images by classical semantic segmentation network, this study proposed a class feature attention mechanism fused with an improved Deeplabv3+ network called CFAMNet for semantic segmentation of common features in remote sensing images. First, the correlation between classes is enhanced using the class feature attention module to extract and process different categories of semantic information better. Second, the multi-parallel atrous spatial pyramid pooling structure is used to enhance the correlation between spaces, to extract the context information of different scales of an image better. Finally, the encoder-decoder structure is used to refine the segmentation results. The segmentation effect of the proposed network is verified by experiments on the public data set GaoFen image dataset (GID). The experimental results show that the CFAMNet can achieve the mean intersection over union (MIOU) and overall accuracy (OA) of 77.22% and 85.01%, respectively, on the GID, thus surpassing the current mainstream semantic segmentation networks. Numéro de notice : A2022-030 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2021.104969 Date de publication en ligne : 26/10/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.104969 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99269
in Computers & geosciences > vol 158 (January 2022) . - n° 104969[article]Adaptive edge preserving maps in Markov random fields for hyperspectral image classification / Chao Pan in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
![]()
[article]
Titre : Adaptive edge preserving maps in Markov random fields for hyperspectral image classification Type de document : Article/Communication Auteurs : Chao Pan, Auteur ; Xiuping Jia, Auteur ; Jie Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 8568 - 8583 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] accentuation de contours
[Termes IGN] algorithme Graph-Cut
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classe d'objets
[Termes IGN] détection de contours
[Termes IGN] étiquette de classe
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] optimisation (mathématiques)
[Termes IGN] segmentation d'imageRésumé : (auteur) This article presents a novel adaptive edge preserving (aEP) scheme in Markov random fields (MRFs) for hyperspectral image (HSI) classification. MRF regularization usually suffered from over-smoothing at boundaries and insufficient refinement within class objects. This work divides and conquers this problem class-by-class, and integrates K ( K−1 )/2 ( K is the class number) aEP maps (aEPMs) in MRF model. Spatial label dependence measure (SLDM) is designed to estimate the interpixel label dependence for given spectral similarity measure. For each class pair, aEPM is optimized by maximizing the difference between intraclass and interclass SLDM. Then, aEPMs are integrated with multilevel logistic (MLL) model to regularize the raw pixelwise labeling obtained by spectral and spectral–spatial methods, respectively. The graph-cuts-based α β -swap algorithm is modified to optimize the designed energy function. Moreover, to evaluate the final refined results at edges and small details thoroughly, segmentation evaluation metrics are introduced. Experiments conducted on real HSI data denote the superiority of aEPMs in evaluation metrics and region consistency, especially in detail preservation. Numéro de notice : A2021-713 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3035642 Date de publication en ligne : 16/11/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3035642 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98618
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8568 - 8583[article]A novel class-specific object-based method for urban change detection using high-resolution remote sensing imagery / Ting Bai in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 4 (April 2021)
![]()
[article]
Titre : A novel class-specific object-based method for urban change detection using high-resolution remote sensing imagery Type de document : Article/Communication Auteurs : Ting Bai, Auteur ; Kaimin Sun, Auteur ; Wenzhuo Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 249-262 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement d'occupation du sol
[Termes IGN] classe d'objets
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] image à haute résolution
[Termes IGN] milieu urbain
[Termes IGN] segmentation multi-échelleRésumé : (Auteur) A single-scale object-based change-detection classifier can distinguish only global changes in land cover, not the more granular and local changes in urban areas. To overcome this issue, a novel class-specific object-based change-detection method is proposed. This method includes three steps: class-specific scale selection, class-specific classifier selection, and land cover change detection. The first step combines multi-resolution segmentation and a random forest to select the optimal scale for each change type in land cover. The second step links multi-scale hierarchical sampling with a classifier such as random forest, support vector machine, gradient-boosting decision tree, or Adaboost; the algorithm automatically selects the optimal classifier for each change type in land cover. The final step employs the optimal classifier to detect binary changes and from-to changes for each change type in land cover. To validate the proposed method, we applied it to two high-resolution data sets in urban areas and compared the change-detection results of our proposed method with that of principal component analysis k-means, object-based change vector analysis, and support vector machine. The experimental results show that our proposed method is more accurate than the other methods. The proposed method can address the high levels of complexity found in urban areas, although it requires historical land cover maps as auxiliary data. Numéro de notice : A2021-332 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.4.249 Date de publication en ligne : 01/04/2021 En ligne : https://doi.org/10.14358/PERS.87.4.249 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97528
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 4 (April 2021) . - pp 249-262[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021041 SL Revue Centre de documentation Revues en salle Disponible SemCity Toulouse: a benchmark for building instance segmentation in satellite images / Ribana Roscher in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-5 (August 2020)
![]()
[article]
Titre : SemCity Toulouse: a benchmark for building instance segmentation in satellite images Type de document : Article/Communication Auteurs : Ribana Roscher, Auteur ; Michele Volpi, Auteur ; Clément Mallet , Auteur ; Lukas Drees, Auteur ; Jan Dirk Wegner, Auteur
Année de publication : 2020 Projets : 1-Pas de projet / Conférence : ISPRS 2020, Commission 5, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 5 Article en page(s) : pp 109 - 116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage automatique
[Termes IGN] bati
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] instance
[Termes IGN] Toulouse
[Termes IGN] zone urbaine denseRésumé : (auteur) In order to reach the goal of reliably solving Earth monitoring tasks, automated and efficient machine learning methods are necessary for large-scale scene analysis and interpretation. A typical bottleneck of supervised learning approaches is the availability of accurate (manually) labeled training data, which is particularly important to train state-of-the-art (deep) learning methods. We present SemCity Toulouse, a publicly available, very high resolution, multi-spectral benchmark data set for training and evaluation of sophisticated machine learning models. The benchmark acts as test bed for single building instance segmentation which has been rarely considered before in densely built urban areas. Additional information is provided in the form of a multi-class semantic segmentation annotation covering the same area plus an adjacent area 3 times larger. The data set addresses interested researchers from various communities such as photogrammetry and remote sensing, but also computer vision and machine learning. Numéro de notice : A2020-503 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-5-2020-109-2020 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-5-2020-109-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95639
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > V-5 (August 2020) . - pp 109 - 116[article]Exploring semantic elements for urban scene recognition: Deep integration of high-resolution imagery and OpenStreetMap (OSM) / Wenzhi Zhao in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
![]()
[article]
Titre : Exploring semantic elements for urban scene recognition: Deep integration of high-resolution imagery and OpenStreetMap (OSM) Type de document : Article/Communication Auteurs : Wenzhi Zhao, Auteur ; Yanchen Bo, Auteur ; Jiage Chen, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 237 - 250 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classe sémantique
[Termes IGN] compréhension de l'image
[Termes IGN] fusion de données
[Termes IGN] image à haute résolution
[Termes IGN] reconnaissance d'objets
[Termes IGN] scène urbaineRésumé : (Auteur) Urban scenes refer to city blocks which are basic units of megacities, they play an important role in citizens’ welfare and city management. Remote sensing imagery with largescale coverage and accurate target descriptions, has been regarded as an ideal solution for monitoring the urban environment. However, due to the heterogeneity of remote sensing images, it is difficult to access their geographical content at the object level, let alone understanding urban scenes at the block level. Recently, deep learning-based strategies have been applied to interpret urban scenes with remarkable accuracies. However, the deep neural networks require a substantial number of training samples which are hard to satisfy, especially for high-resolution images. Meanwhile, the crowed-sourced Open Street Map (OSM) data provides rich annotation information about the urban targets but may encounter the problem of insufficient sampling (limited by the places where people can go). As a result, the combination of OSM and remote sensing images for efficient urban scene recognition is urgently needed. In this paper, we present a novel strategy to transfer existing OSM data to high-resolution images for semantic element determination and urban scene understanding. To be specific, the object-based convolutional neural network (OCNN) can be utilized for geographical object detection by feeding it rich semantic elements derived from OSM data. Then, geographical objects are further delineated into their functional labels by integrating points of interest (POIs), which contain rich semantic terms, such as commercial or educational labels. Lastly, the categories of urban scenes are easily acquired from the semantic objects inside. Experimental results indicate that the proposed method has an ability to classify complex urban scenes. The classification accuracies of the Beijing dataset are as high as 91% at the object-level and 88% at the scene level. Additionally, we are probably the first to investigate the object level semantic mapping by incorporating high-resolution images and OSM data of urban areas. Consequently, the method presented is effective in delineating urban scenes that could further boost urban environment monitoring and planning with high-resolution images. Numéro de notice : A2019-209 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.03.019 Date de publication en ligne : 29/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.03.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92675
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 237 - 250[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019053 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Towards visual urban scene understanding for autonomous vehicle path tracking using GPS positioning data / Citlalli Gamez Serna (2019)
PermalinkLabel propagation with ensemble of pairwise geometric relations : towards robust large-scale retrieval of object instances / Xiaomeng Wu in International journal of computer vision, vol 126 n° 7 (July 2018)
PermalinkLabelling hierarchy for street maps using centrality measures / Wasim Shoman in Cartographic journal (the), vol 55 n° 1 (February 2018)
PermalinkA hydrological sensor web ontology based on the SSN ontology: A case study for a flood / Chao Wang in ISPRS International journal of geo-information, vol 7 n° 1 (January 2018)
PermalinkGeometric features and their relevance for 3D point cloud classification / Martin Weinmann in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-1/W1 ([30/05/2017])
PermalinkIntegrating social network data into GISystems / Clio Andris in International journal of geographical information science IJGIS, vol 30 n° 9-10 (September - October 2016)
PermalinkA survey on web data linking / Manel Achichi in Ingénierie des systèmes d'information, ISI : Revue des sciences et technologies de l'information, RSTI, vol 21 n° 5 - 6 (septembre - décembre 2016)
PermalinkCarte de Kohonen et classification ascendante hiérarchique pour l’analyse de données géohistoriques / Ana-Maria Olteanu-Raimond in Revue internationale de géomatique, vol 25 n° 4 (octobre - décembre 2015)
PermalinkAn integrated heterogeneous web service retrieval via combination of instance- and metadata-based schema matching method / Jie He in Geo-spatial Information Science, vol 18 n° 2 (August 2015)
PermalinkModalités de représentation en 3D de données issues du SIG2D, pour la conception et la simulation / Olivier Jest (2015)
Permalink