Descripteur
Termes descripteurs IGN > mathématiques > statistique mathématique > analyse de données > classification > classification bayesienne
classification bayesienneSynonyme(s)classification probabiliste bayésienneVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Probabilistic positioning in mobile phone network and its consequences for the privacy of mobility data / Aleksey Ogulenko in Computers, Environment and Urban Systems, vol 85 (January 2021)
![]()
[article]
Titre : Probabilistic positioning in mobile phone network and its consequences for the privacy of mobility data Type de document : Article/Communication Auteurs : Aleksey Ogulenko, Auteur ; Itzhak Benenson, Auteur ; Itzhak Omer, Auteur Année de publication : 2021 Article en page(s) : n° 101550 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] antenne
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] confidentialité
[Termes descripteurs IGN] diagramme de Voronoï
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] géolocalisation
[Termes descripteurs IGN] inférence
[Termes descripteurs IGN] protection de la vie privée
[Termes descripteurs IGN] réseau téléphonique
[Termes descripteurs IGN] téléphonie mobile
[Termes descripteurs IGN] tessellationRésumé : (auteur) The traditional approach to mobile phone positioning is based on the assumption that the geographical location of a cell tower recorded in a Call Details Record (CDR) is a proxy for a device's location. A Voronoi tessellation is then constructed based on the entire network of cell towers and this tessellation is considered as a coordinate system, with the device located in a Voronoi polygon of a cell tower that is recorded in the CDR. If Voronoi-based positioning is correct, the uniqueness of the device trajectory is very high, and the device can be identified based on 3–5 of its recorded locations. We investigate a probabilistic approach to device positioning that is based on knowledge of each antennas' parameters and number of connections, as dependent on the distance to the antenna. The critical difference between the Voronoi-based and the real world layout is in the essential overlap of the antennas' service areas: The device that is located in a cell tower's polygon can be served by a more distant antenna that is chosen by the network system to balance the network load. Combining data on the distance distribution of the number of connections available for each antenna in the network, we resolve the overlap problem by applying Bayesian inference and construct a realistic distribution of the device location. Probabilistic device positioning demands a full revision of mobile phone privacy and new full set of tools for data analysis. Numéro de notice : A2021-005 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2020.101550 date de publication en ligne : 14/10/2020 En ligne : https://doi.org/10.1016/j.compenvurbsys.2020.101550 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96272
in Computers, Environment and Urban Systems > vol 85 (January 2021) . - n° 101550[article]The spatial structure of socioeconomic disadvantage: a Bayesian multivariate spatial factor analysis / Matthew Quick in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
![]()
[article]
Titre : The spatial structure of socioeconomic disadvantage: a Bayesian multivariate spatial factor analysis Type de document : Article/Communication Auteurs : Matthew Quick, Auteur ; Hui Luan, Auteur Année de publication : 2021 Article en page(s) : pp 63 - 83 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse multivariée
[Termes descripteurs IGN] analyse socio-économique
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] pauvreté
[Termes descripteurs IGN] quartier
[Termes descripteurs IGN] revenu
[Termes descripteurs IGN] structure spatiale
[Termes descripteurs IGN] TorontoRésumé : (auteur) Neighborhood socioeconomic disadvantage is a measure of socio-spatial inequality that has been shown to be associated with a variety of social, economic, and health outcomes. Existing studies that explore the local patterning of disadvantage often construct composite indices that summarize the interactions between multiple dimensions of social status, but do not consider if, and how, disadvantage exhibits spatial structure. This study applies a Bayesian multivariate factor analytic modeling approach to examine the spatial structure of socioeconomic disadvantage in Toronto, Canada. Socioeconomic disadvantage is modeled as an area-based composite index associated with three variables measuring low income, low-educational attainment, and low occupational status, and a series of models with different assumptions regarding the spatial structure of disadvantage are compared. The best-fitting model shows that the prevalence of low-income households has the strongest positive association with disadvantage and that spatial clustering is three times more important than spatial heterogeneity for explaining the spatial structure of disadvantage. The implications of this study for analyzing multivariate spatial data and for understanding the interactions amongst multiple dimensions of disadvantage are discussed. Numéro de notice : A2021-020 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1759807 date de publication en ligne : 07/05/2020 En ligne : https://doi.org/10.1080/13658816.2020.1759807 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96519
in International journal of geographical information science IJGIS > vol 35 n° 1 (January 2021) . - pp 63 - 83[article]Bayesian-deep-learning estimation of earthquake location from single-station observations / S. Mostafa Mousavi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
![]()
[article]
Titre : Bayesian-deep-learning estimation of earthquake location from single-station observations Type de document : Article/Communication Auteurs : S. Mostafa Mousavi, Auteur ; Gregory C. Beroza, Auteur Année de publication : 2020 Article en page(s) : pp 8211 - 8224 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection du signal
[Termes descripteurs IGN] épicentre
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] onde sismique
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] séisme
[Termes descripteurs IGN] station d'observation
[Termes descripteurs IGN] surveillance géologique
[Termes descripteurs IGN] temps de propagationRésumé : (auteur) We present a deep-learning method for a single-station earthquake location, which we approach as a regression problem using two separate Bayesian neural networks. We use a multitask temporal convolutional neural network to learn epicentral distance and P travel time from 1-min seismograms. The network estimates epicentral distance and P travel time with mean errors of 0.23 km and 0.03 s and standard deviations of 5.42 km and 0.66 s, respectively, along with their epistemic and aleatory uncertainties. We design a separate multi-input network using standard convolutional layers to estimate the back-azimuth angle and its epistemic uncertainty. This network estimates the direction from which seismic waves arrive at the station with a mean error of 1°. Using this information, we estimate the epicenter, origin time, and depth along with their confidence intervals. We use a global data set of earthquake signals recorded within 1° (~112 km) from the event to build the model and demonstrate its performance. Our model can predict epicenter, origin time, and depth with mean errors of 7.3 km, 0.4 s, and 6.7 km, respectively, at different locations around the world. Our approach can be used for fast earthquake source characterization with a limited number of observations and also for estimating the location of earthquakes that are sparsely recorded—either because they are small or because stations are widely separated. Numéro de notice : A2020-684 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2988770 date de publication en ligne : 06/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2988770 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96209
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 8211 - 8224[article]Object-based classification of mixed forest types in Mongolia / E. Nyamjargal in Geocarto international, vol 35 n° 14 ([15/10/2020])
![]()
[article]
Titre : Object-based classification of mixed forest types in Mongolia Type de document : Article/Communication Auteurs : E. Nyamjargal, Auteur ; D. Amarsaikhan, Auteur ; A. Munkh-Erdene, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1615 - 1626 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] approche hiérarchique
[Termes descripteurs IGN] approche pixel
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] Mongolie
[Termes descripteurs IGN] peuplement mélangéRésumé : (auteur) The aim of this study is to produce updated forest map of the Bogdkhan Mountain, Mongolia using multitemporal Sentinel-2A images. The target area has highly mixed forest types and it is very difficult to differentiate the fuzzy boundaries among different forest types. To extract the forest class information, an object-based classification technique is applied and a rule-base to separate the mixed classes is developed. The rule-base uses a hierarchy of rules describing different conditions under which the actual classification has to be performed. To compare the result of the developed method with a result of a pixel-based approach, a Bayesian maximum likelihood classification is applied. The final result indicates overall accuracy of 90.87% for the object-based classification, while for the pixel-based approach it is 79.89%. Overall, the research indicates that the object-based method that uses a thoroughly defined segmentation and a well-constructed rule-base can significantly improve the classification of mixed forest types and produce of a reliable forest map. Numéro de notice : A2020-619 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1583775 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1583775 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95995
in Geocarto international > vol 35 n° 14 [15/10/2020] . - pp 1615 - 1626[article]Use of Bayesian modeling to determine the effects of meteorological conditions, prescribed burn season, and tree characteristics on litterfall of pinus nigra and pinus pinaster stands / Juncal Espinosa in Forests, vol 11 n° 9 (September 2020)
![]()
[article]
Titre : Use of Bayesian modeling to determine the effects of meteorological conditions, prescribed burn season, and tree characteristics on litterfall of pinus nigra and pinus pinaster stands Type de document : Article/Communication Auteurs : Juncal Espinosa, Auteur ; Óscar Rodríguez de Rivera, Auteur ; Javier Madrigal, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : N° 1006 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] biomasse
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] données météorologiques
[Termes descripteurs IGN] Espagne
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] incendie de forêt
[Termes descripteurs IGN] intégrale de Laplace
[Termes descripteurs IGN] modèle linéaire
[Termes descripteurs IGN] Pinus nigra
[Termes descripteurs IGN] Pinus pinaster
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Research Highlights: Litterfall biomass after prescribed burning (PB) is significantly influenced by meteorological variables, stand characteristics, and the fire prescription. Some of the fire-adaptive traits of the species under study (Pinus nigra and Pinus pinaster) mitigate the effects of PB on litterfall biomass. The Bayesian approach, tested here for the first time, was shown to be useful for analyzing the complex combination of variables influencing the effect of PB on litterfall.
Background and Objectives: The aims of the study focused on explaining the influence of meteorological conditions after PB on litterfall biomass, to explore the potential influence of stand characteristic and tree traits that influence fire protection, and to assess the influence of fire prescription and fire behavior.
Materials and Methods: An experimental factorial design including three treatments (control, spring, and autumn burning), each with three replicates, was established at two experimental sites (N = 18; 50 × 50 m2 plots). The methodology of the International Co-operative Program on Assessment and Monitoring of Air Pollution Effects on Forests (ICP forests) was applied and a Bayesian approach was used to construct a generalized linear mixed model.
Results: Litterfall was mainly affected by the meteorological variables and also by the type of stand and the treatment. The effects of minimum bark thickness and the height of the first live branch were random. The maximum scorch height was not high enough to affect the litterfall. Time during which the temperature exceeded 60 °C (cambium and bark) did not have an important effect. Conclusions: Our findings demonstrated that meteorological conditions were the most significant variables affecting litterfall biomass, with snowy and stormy days having important effects. Significant effects of stand characteristics (mixed and pure stand) and fire prescription regime (spring and autumn PB) were shown. The trees were completely protected by a combination of low-intensity PB and fire-adaptive tree traits, which prevent direct and indirect effects on litterfall. Identification of important variables can help to improve PB and reduce the vulnerability of stands managed by this method.Numéro de notice : A2020-753 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11091006 date de publication en ligne : 18/09/2020 En ligne : https://doi.org/10.3390/f11091006 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96433
in Forests > vol 11 n° 9 (September 2020) . - N° 1006[article]Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics / Jasper A. Slingsby in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkVolcano-seismic transfer learning and uncertainty quantification with bayesian neural networks / Angel Bueno in IEEE Transactions on geoscience and remote sensing, vol 58 n° 2 (February 2020)
PermalinkNonparametric Bayesian learning for collaborative robot multimodal introspection / Xuefeng Zhou · (2020)
PermalinkSemantic segmentation of road furniture in mobile laser scanning data / Fashuai Li in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
PermalinkSimultaneous chain-forming and generalization of road networks / Susanne Wenzel in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 1 (January 2019)
PermalinkA hybrid ensemble learning method for tourist route recommendations based on geo-tagged social networks / Lin Wan in International journal of geographical information science IJGIS, vol 32 n° 11-12 (November - December 2018)
PermalinkHierarchical cellular automata for visual saliency / Yao Qin in International journal of computer vision, vol 126 n° 7 (July 2018)
PermalinkCombining land cover products using a minimum divergence and a Bayesian data fusion approach / Sarah Gengler in International journal of geographical information science IJGIS, vol 32 n° 3-4 (March - April 2018)
PermalinkNouvelle méthode en cascade pour la classification hiérarchique multi-temporelle ou multi-capteur d'images satellitaires haute résolution / Ihsen Hedhli in Revue Française de Photogrammétrie et de Télédétection, n° 216 (février 2018)
PermalinkMachine learning and pose estimation for autonomous robot grasping with collaborative robots / Victor Talbot (2018)
Permalink