Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > classification > classification bayesienne
classification bayesienneSynonyme(s)classification probabiliste bayésienneVoir aussi |
Documents disponibles dans cette catégorie (76)



Etendre la recherche sur niveau(x) vers le bas
Measuring spatial nonstationary effects of POI-based mixed use on urban vibrancy using Bayesian spatially varying coefficients model / Zensheng Wang in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
![]()
[article]
Titre : Measuring spatial nonstationary effects of POI-based mixed use on urban vibrancy using Bayesian spatially varying coefficients model Type de document : Article/Communication Auteurs : Zensheng Wang, Auteur ; Feidong Lu, Auteur ; Zhaohui Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 339 - 359 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] approche hiérarchique
[Termes IGN] classification bayesienne
[Termes IGN] dynamique spatiale
[Termes IGN] estimation bayesienne
[Termes IGN] hétérogénéité spatiale
[Termes IGN] modèle de simulation
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] Shenzhen
[Termes IGN] téléphonie mobile
[Termes IGN] urbanisation
[Termes IGN] utilisation du solRésumé : (auteur) Understanding the relationship between mixed land use and urban vibrancy is vital in advanced urban planning applications. This study presents a Bayesian spatially varying coefficient (SVC) model to explore the spatially nonstationary relationship between mixed land use and urban vibrancy after controlling for other factors. We first use the convolutional conditional autoregressive prior to accommodate the ecological bias resulting from unobserved confounders. Then we develop our approach in the case of a single predictor to allow the spatially varying coefficient process. We further introduce a type of the Bayesian SVC model that considers the stratified heterogeneity of the outcome, allowing the coefficients to simultaneously vary at the local and subregion level. We illustrate the proposed model by conducting a case study in Shenzhen using mobile phone data, an officially registered point-of-interest (POI) dataset, and several supplementary datasets. The model evaluation results show that including spatially unstructured and structured component combinations can improve the model's fitness and predictive ability; additionally, considering spatial stratified heterogeneity can further enhance the model's performance. Our findings provide an alternative for measuring the variable local-scale association between mixed-use and urban vibrancy and offer new insights that broaden the fields of environmental science and spatial statistics. Numéro de notice : A2023-057 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2117363 En ligne : https://doi.org/10.1080/13658816.2022.2117363 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102393
in International journal of geographical information science IJGIS > vol 37 n° 2 (February 2023) . - pp 339 - 359[article]Machine learning and natural language processing of social media data for event detection in smart cities / Andrei Hodorog in Sustainable Cities and Society, vol 85 (October 2022)
![]()
[article]
Titre : Machine learning and natural language processing of social media data for event detection in smart cities Type de document : Article/Communication Auteurs : Andrei Hodorog, Auteur ; Ioan Petri, Auteur ; yacine Rezgui, Auteur Année de publication : 2022 Article en page(s) : n° 104026 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage automatique
[Termes IGN] classification bayesienne
[Termes IGN] détection d'événement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] outil d'aide à la décision
[Termes IGN] régression multiple
[Termes IGN] taxinomie
[Termes IGN] traitement du langage naturel
[Termes IGN] ville intelligenteRésumé : (auteur) Social media data analysis in a smart city context can represent an efficacious instrument to inform decision making. The manuscript strives to leverage the power of Natural Language Processing (NLP) techniques applied to Twitter messages using supervised learning to achieve real-time automated event detection in smart cities. A semantic-based taxonomy of risks is devised to discover and analyse associated events from data streams, with a view to: (i) read and process, in real-time, published texts (ii) classify each text into one representative real-world category (iii) assign a citizen satisfaction value to each event. To select the language processing models striking the best balance between accuracy and processing speed, we conducted a pre-emptive evaluation, comparing several baseline language models formerly employed by researchers for event classification. A heuristic analysis of several smart cities and community initiatives was conducted, with a view to define real-world scenarios as basis for determining correlations between two or more co-occurring event types and their associated levels of citizen satisfaction, while further considering environmental factors. Based on Multiple Regression Analysis (MRA), we established the relationships between scenario variables, obtaining a variance of 60%–90% between the dependent and independent variables. The selected combination of supervised NLP techniques leverages an accuracy of 88.5%. We found that all regression models had at least one variable below the 0.05 threshold of the , therefore at least one statistically significant independent variable. These findings ultimately illustrate how citizens, taking the role of active social sensors, can yield vital data that authorities can use to make educated decisions and sustainably construct smarter cities. Numéro de notice : A2022-764 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2022.104026 Date de publication en ligne : 02/07/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104026 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101785
in Sustainable Cities and Society > vol 85 (October 2022) . - n° 104026[article]A comparative assessment of modeling groundwater vulnerability using DRASTIC method from GIS and a novel classification method using machine learning classifiers / Qasim Khan in Geocarto international, vol 37 n° 20 ([20/09/2022])
![]()
[article]
Titre : A comparative assessment of modeling groundwater vulnerability using DRASTIC method from GIS and a novel classification method using machine learning classifiers Type de document : Article/Communication Auteurs : Qasim Khan, Auteur ; Muhammad Usman Liaqat, Auteur ; Mohamed Mostafa Mohamed, Auteur Année de publication : 2022 Article en page(s) : pp 5832 - 5850 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse en composantes principales
[Termes IGN] apprentissage automatique
[Termes IGN] aquifère
[Termes IGN] ArcGIS
[Termes IGN] classification bayesienne
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] eau souterraine
[Termes IGN] Emirats Arabes Unis
[Termes IGN] estimation par noyau
[Termes IGN] nitrate
[Termes IGN] vulnérabilitéRésumé : (auteur) Groundwater is more prone to contamination due to its extensive usage. Different methods are applied to study vulnerability of groundwater including widely used DRASTIC method, SI and GOD. This study proposes a novel method of mapping groundwater vulnerability using machine learning algorithms. In this study, point extraction method was used to extract point values from a grid of 646 points of seven raster layer in the Al Khatim study area of United Arab Emirates. These extracted values were classified based on nitrate concentration threshold of 50 mg/L into two classes. Machine learning models were developed, using depth to water (D), recharge (R), aquifer media (A), soil media (S), topography (T), vadose zone (I) and hydraulic conductivity (C), on the basis of nitrate class. Classified ‘groundwater vulnerability class values’ were trained using 10-fold cross-validation, using four machine learning models which were Random Forest, Support Vector Machine, Naïve Bayes and C4. 5. Accuracy showed the model developed by Random Forest gained highest accuracy of 93%. Four groundwater vulnerability maps were developed from machine learning classifiers and was compared with base method of DRASTIC index. The efficiency, accuracy and validity of machine learning based models were evaluated based on Receiver Operating Characteristics (ROC) curve and Precision-Recall curve (PRC). The results proved that machine learning is an efficient tool to access, analyze and map groundwater vulnerability. Numéro de notice : A2022-716 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2021.1923833 Date de publication en ligne : 01/06/2021 En ligne : https://doi.org/10.1080/10106049.2021.1923833 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101641
in Geocarto international > vol 37 n° 20 [20/09/2022] . - pp 5832 - 5850[article]Comparison of PBIA and GEOBIA classification methods in classifying turbidity in reservoirs / Douglas Stefanello Facco in Geocarto international, vol 37 n° 16 ([15/08/2022])
![]()
[article]
Titre : Comparison of PBIA and GEOBIA classification methods in classifying turbidity in reservoirs Type de document : Article/Communication Auteurs : Douglas Stefanello Facco, Auteur ; Laurindo Antonio Guasselli, Auteur ; Luis Fernando Chimelo Ruiz, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 4762 - 4783 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image orientée objet
[Termes IGN] bande spectrale
[Termes IGN] Brésil
[Termes IGN] centrale hydroélectrique
[Termes IGN] classification bayesienne
[Termes IGN] classification dirigée
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Landsat-OLI
[Termes IGN] segmentation d'image
[Termes IGN] turbidité des eauxRésumé : (auteur) Our goal is to compare the performance of Classification and Regression Tree, Naive Bayes and Random Forest algorithms, from supervised image classification, and approaches on Pixel-Based Image analysis (PBIA) and Geographic Object-Based Image Analysis (GEOBIA), to classify turbidity in reservoirs. Tod do so, we use Landsat 8 image and bands and spectral indices, as predictive parameters, as well as the classification algorithms based on PBIA and GEOBIA. The Brazilian Itaipu reservoir was adopted, as a case study. Our results show that the RF classifier obtained the highest accuracy in both classification approaches, followed by CART and NB. The KA and OA indices of the GEOBIA classifications were superior to the PBIA classifications in both algorithms. This study contributes with an approach to quickly and accurately delineating turbidity spectral limits in reservoirs. Numéro de notice : A2022-668 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1899302 Date de publication en ligne : 22/06/2021 En ligne : https://doi.org/10.1080/10106049.2021.1899302 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101519
in Geocarto international > vol 37 n° 16 [15/08/2022] . - pp 4762 - 4783[article]The integration of multi-source remotely sensed data with hierarchically based classification approaches in support of the classification of wetlands / Aaron Judah in Canadian journal of remote sensing, vol 48 n° 2 (April 2022)
![]()
[article]
Titre : The integration of multi-source remotely sensed data with hierarchically based classification approaches in support of the classification of wetlands Type de document : Article/Communication Auteurs : Aaron Judah, Auteur ; Baoxin Hu, Auteur Année de publication : 2022 Article en page(s) : pp 158 - 181 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] classification bayesienne
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-TM
[Termes IGN] image Sentinel-SAR
[Termes IGN] intégration de données
[Termes IGN] modèle numérique de terrain
[Termes IGN] précision de la classification
[Termes IGN] tourbière
[Termes IGN] utilisation du sol
[Termes IGN] zone humideRésumé : (auteur) Methodologies were developed to classify wetlands (Open Bog, Treed Bog, Open Fen, Treed Fen, and Swamps) from remotely sensed data using advanced classification algorithms through two hierarchical approaches. The data utilized included multispectral optical and thermal data (Landsat-5, and Landsat-8), radar imagery (Sentinel-1), and a digital elevation model. Goals were to determine the best way to combine imagery to classify wetlands through hierarchically based classification approaches to produce more accurate and efficient maps compared to standard classification. Algorithms used were Random Forest (RF), and Naïve Bayes. A hierarchically based RF classification methodology produced the most accurate classification result (91.94%). The hierarchically based approaches also improved classification accuracies for low-quality data, as defined through feature analysis, when compared to a nonhierarchical classifier. The hierarchical approaches also produced a significant increase in classification accuracy for the Naïve Bayes classifier versus the standard approach (∼12% increase) while not significantly increasing computation time – comparable in accuracy to the RF tests for around 20% the computational effort. Preselection of spectral bands, polarizations and other input parameters (Normalized Difference Vegetation Index, Normalized Difference Water Index, albedo, slope, etc.) using log-normal or RF variable importance analysis was very effective at identifying low-quality features and features which were of higher quality. Numéro de notice : A2022-372 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/07038992.2021.1967732 Date de publication en ligne : 13/11/2021 En ligne : https://doi.org/10.1080/07038992.2021.1967732 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100614
in Canadian journal of remote sensing > vol 48 n° 2 (April 2022) . - pp 158 - 181[article]Hierarchical learning with backtracking algorithm based on the visual confusion label tree for large-scale image classification / Yuntao Liu in The Visual Computer, vol 38 n° 3 (March 2022)
PermalinkPermalinkCoral habitat mapping: a comparison between maximum likelihood, Bayesian and Dempster–Shafer classifiers / Mohammad Shawkat Hossain in Geocarto international, vol 36 n° 11 ([15/06/2021])
PermalinkMapping fine-scale human disturbances in a working landscape with Landsat time series on Google Earth Engine / Tongxi Hu in ISPRS Journal of photogrammetry and remote sensing, vol 176 (June 2021)
PermalinkHyperspectral image denoising via clustering-based latent variable in variational Bayesian framework / Peyman Azimpour in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
PermalinkUrban flood hazard mapping using machine learning models: GARP, RF, MaxEnt and NB / Mahya Norallahi in Natural Hazards, vol 106 n° 1 (March 2021)
PermalinkCorrecting misclassification errors in crowdsourced ecological data: A Bayesian perspective / Edgar Santos-Fernandez in Journal of the Royal Statistical Society: Series C Applied Statistics, vol 70 n° 1 (January 2021)
PermalinkProbabilistic positioning in mobile phone network and its consequences for the privacy of mobility data / Aleksey Ogulenko in Computers, Environment and Urban Systems, vol 85 (January 2021)
PermalinkThe spatial structure of socioeconomic disadvantage: a Bayesian multivariate spatial factor analysis / Matthew Quick in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
PermalinkBayesian-deep-learning estimation of earthquake location from single-station observations / S. Mostafa Mousavi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
Permalink