Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > classification > classification floue
classification floue |
Documents disponibles dans cette catégorie (87)



Etendre la recherche sur niveau(x) vers le bas
Developing a GIS-based rough fuzzy set granulation model to handle spatial uncertainty for hydrocarbon structure classification, case study: Fars domain, Iran / Sahand Seraj in Geo-spatial Information Science, vol 25 n° 3 (October 2022)
![]()
[article]
Titre : Developing a GIS-based rough fuzzy set granulation model to handle spatial uncertainty for hydrocarbon structure classification, case study: Fars domain, Iran Type de document : Article/Communication Auteurs : Sahand Seraj, Auteur ; Mahmoud Reza Delavar, Auteur Année de publication : 2022 Article en page(s) : pp 399 - 41 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] cartographie géologique
[Termes IGN] classification floue
[Termes IGN] entropie de Shannon
[Termes IGN] forage
[Termes IGN] granulométrie (pétrologie)
[Termes IGN] hydrocarbure
[Termes IGN] incertitude géométrique
[Termes IGN] Iran
[Termes IGN] prospection minérale
[Termes IGN] sous ensemble flou
[Termes IGN] système d'information géographiqueRésumé : (auteur) It is well agreed that geologic risk occurs during hydrocarbon exploration because diverse uncertainties accompany the entire hydrocarbon system parameters such as the source rock, reservoir rock, trap and seal rock. In order to overcome such attributes with uncertainties, a number of soft computing methods are used. Information granules could be provided by the Rough Fuzzy Set Granulation (RFSG) with a thorough quality evaluation. This is capable of attribute reduction that has been claimed to be essential in investigating the hydrocarbon systems. This paper is an endeavor to recommend a Geospatial Information System (GIS)-based model with the aim of categorizing the hydrocarbon structures map consistent with the uncertainty range concepts of geologic risk in the rough fuzzy sets and granular computing. The model used the RFSG for the attribute reduction by a Decision Logic language (DL-language). The RFSG was employed in order to classify hydrocarbon structures according to geological risk and extract the fuzzy rules with a predefined range of uncertainty. In order to assess the precisions of the fuzzy decisions on the hydrocarbon structure classification, the fuzzy entropy and fuzzy cross-entropy are applied. The proposed RFSG model applied for 62 structures as the training data, average fuzzy entropy has been calculated as 0.85, whereas the average fuzzy cross-entropy has been calculated 0.18. As it can be discerned, just seven structures had cross-entropies greater than 0.1, while three structures were larger than 0.3. It is implied that the precision of the proposed model is about 89%. The results yielded two reductions for the condition attributes and 11 fuzzy rules being filtered by the granular computing values. Numéro de notice : A2022-724 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10095020.2021.2020600 Date de publication en ligne : 03/02/2022 En ligne : https://doi.org/10.1080/10095020.2021.2020600 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101667
in Geo-spatial Information Science > vol 25 n° 3 (October 2022) . - pp 399 - 41[article]Novel fuzzy clustering algorithm with variable multi-pixel fitting spatial information for image segmentation / Hang Zhang in Pattern recognition, vol 121 (January 2022)
![]()
[article]
Titre : Novel fuzzy clustering algorithm with variable multi-pixel fitting spatial information for image segmentation Type de document : Article/Communication Auteurs : Hang Zhang, Auteur ; Haili Li, Auteur ; Ning Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108201 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] classification floue
[Termes IGN] classification pixellaire
[Termes IGN] filtre
[Termes IGN] segmentation d'image
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) Spatial information is often used to enhance the robustness of traditional fuzzy c-means (FCM) clustering algorithms. Although some recently emerged improvements are remarkable, the computational complexity of these algorithms is high, which may lead to lack of practicability. To address this problem, an efficient variant named the fuzzy clustering algorithm with variable multi-pixel fitting spatial information (FCM-VMF) is presented. First, a fuzzy clustering algorithm with multi-pixel fitting spatial information (FCM-MF) is developed. Specifically, by dividing the input image into several filter windows, the spatial information of all pixels in each filter window can be obtained simultaneously by fitting the pixels in its corresponding neighbourhood window, which enormously reduces the computational complexity. However, the FCM-MF may result in the loss of edge information. Therefore, the FCM-VMF integrates a variable window strategy with FCM-MF. In this strategy, to preserve more edge information, the sizes of the filter window and generalized neighbourhood window are adaptively reduced. The experimental results show that FCM-VMF is as effective as some recent algorithms. Notably, the FCM-VMF has extremely high efficiency, which means it has a better prospect of application. Numéro de notice : A2022-100 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.patcog.2021.108201 Date de publication en ligne : 26/07/2021 En ligne : https://doi.org/10.1016/j.patcog.2021.108201 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99564
in Pattern recognition > vol 121 (January 2022) . - n° 108201[article]Incorporating multi-criteria decision-making and fuzzy-value functions for flood susceptibility assessment / Ali Azareh in Geocarto international, vol 36 n° 20 ([01/12/2021])
![]()
[article]
Titre : Incorporating multi-criteria decision-making and fuzzy-value functions for flood susceptibility assessment Type de document : Article/Communication Auteurs : Ali Azareh, Auteur ; Elham Rafiei Sardooi, Auteur ; Bahram Choubin, Auteur ; Saeed Barkhori, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2345 - 2365 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse des risques
[Termes IGN] analyse multicritère
[Termes IGN] bassin hydrographique
[Termes IGN] cartographie des risques
[Termes IGN] classification floue
[Termes IGN] crue
[Termes IGN] gestion des risques
[Termes IGN] inondation
[Termes IGN] Iran
[Termes IGN] logique floue
[Termes IGN] risque naturel
[Termes IGN] zone à risqueRésumé : (auteur) Floods are among the most frequently occurring natural disasters and the costliest in terms of human life and ecosystem disturbance. Identifying areas susceptible to flooding is important for developing appropriate watershed management policies. As such, the goal of the present study was to develop an integrated framework for flood susceptibility assessment in data-scarce regions, using data from the Haraz watershed in Iran. Flood-influencing indices best suited to the identification of areas particularly prone to flooding were selected. The decision-making trial and evaluation laboratory (DEMATEL) approach was used to investigate the interdependence among criteria and to develop a network structure representative of the problem. The relative importance of different flood-influencing factors was determined using the analytical network process (ANP). A flood susceptibility map was produced using weights obtained through the ANP and fuzzy-value function (FVF) and validated using 72 available flood locations where flooding occurred between 2006 and 2018. After validating the results, fuzzy theory served to better delineate the flood susceptibility scores among the region’s sub-watersheds. Incorporating the DEMATEL-ANP approach with FVF yielded an accuracy of 89.1%, as was assessed through the area under the curve (AUC) of a receiver operating characteristics (ROC) curve. The results indicated that the strongest flood-influencing (occurrence/nonoccurrence) factors were elevation, land use, soil texture, and frequency of heavy rainstorms. The fuzzy theory showed sub-watershed C1 to be highly susceptible to flooding, and thus, most in need of flood management. Numéro de notice : A2021-833 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1695958 Date de publication en ligne : 28/11/2019 En ligne : https://doi.org/10.1080/10106049.2019.1695958 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99006
in Geocarto international > vol 36 n° 20 [01/12/2021] . - pp 2345 - 2365[article]Exploring fuzzy local spatial information algorithms for remote sensing image classification / Anjali Madhu in Remote sensing, vol 13 n° 20 (October-2 2021)
![]()
[article]
Titre : Exploring fuzzy local spatial information algorithms for remote sensing image classification Type de document : Article/Communication Auteurs : Anjali Madhu, Auteur ; Anil Kumar, Auteur ; Peng Jia, Auteur Année de publication : 2021 Article en page(s) : n° 4163 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] classification dirigée
[Termes IGN] classification floue
[Termes IGN] classification pixellaire
[Termes IGN] distance euclidienne
[Termes IGN] erreur moyenne quadratique
[Termes IGN] Inde
[Termes IGN] matrice d'erreur
[Termes IGN] occupation du sol
[Termes IGN] théorie des possibilitésRésumé : (auteur) Fuzzy c-means (FCM) and possibilistic c-means (PCM) are two commonly used fuzzy clustering algorithms for extracting land use land cover (LULC) information from satellite images. However, these algorithms use only spectral or grey-level information of pixels for clustering and ignore their spatial correlation. Different variants of the FCM algorithm have emerged recently that utilize local spatial information in addition to spectral information for clustering. Such algorithms are seen to generate clustering outputs that are more enhanced than the classical spectral-based FCM algorithm. Nonetheless, the scope of integrating spatial contextual information with the conventional PCM algorithm, which has several advantages over the FCM algorithm for supervised classification, has not been explored much. This study proposed integrating local spatial information with the PCM algorithm using simpler but proven approaches from available FCM-based local spatial information algorithms. The three new PCM-based local spatial information algorithms: Possibilistic c-means with spatial constraints (PCM-S), possibilistic local information c-means (PLICM), and adaptive possibilistic local information c-means (ADPLICM) algorithms, were developed corresponding to the available fuzzy c-means with spatial constraints (FCM-S), fuzzy local information c-means (FLICM), and adaptive fuzzy local information c-means (ADFLICM) algorithms. Experiments were conducted to analyze and compare the FCM and PCM classifier variants for supervised LULC classifications in soft (fuzzy) mode. The quantitative assessment of the soft classification results from fuzzy error matrix (FERM) and root mean square error (RMSE) suggested that the new PCM-based local spatial information classifiers produced higher accuracies than the PCM, FCM, or its local spatial variants, in the presence of untrained classes and noise. The promising results from PCM-based local spatial information classifiers suggest that the PCM algorithm, which is known to be naturally robust to noise, when integrated with local spatial information, has the potential to result in more efficient classifiers capable of better handling ambiguities caused by spectral confusions in landscapes. Numéro de notice : A2021-806 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13204163 Date de publication en ligne : 18/10/2021 En ligne : https://doi.org/10.3390/rs13204163 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98864
in Remote sensing > vol 13 n° 20 (October-2 2021) . - n° 4163[article]Unsupervised band selection of hyperspectral data based on mutual information derived from weighted cluster entropy for snow classification / Divyesh Varade in Geocarto international, vol 36 n° 15 ([15/08/2021])
![]()
[article]
Titre : Unsupervised band selection of hyperspectral data based on mutual information derived from weighted cluster entropy for snow classification Type de document : Article/Communication Auteurs : Divyesh Varade, Auteur ; Ajay K. Maurya, Auteur ; Onkar Dikshit, Auteur Année de publication : 2021 Article en page(s) : pp 1709 - 1731 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] bande spectrale
[Termes IGN] classification floue
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par nuées dynamiques
[Termes IGN] distribution spatiale
[Termes IGN] entropie
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] Inde
[Termes IGN] manteau neigeux
[Termes IGN] neige
[Termes IGN] réflectance spectraleRésumé : (auteur) Information on the spatial and temporal extent of snow cover distribution is a significant input in hydrological processes and climate models. Although hyperspectral remote sensing provides significant opportunities in the assessment of land cover, the applications of such data are limited in the snow-covered alpine regions. A major issue with hyperspectral data is the larger dimensionality. Feature selection methods are often used to derive the most informative subset of bands from the hyperspectral data. In this study, a band selection technique is proposed which utilizes the mutual information (MI) between hyperspectral bands and a reference band. The first principal component of the hyperspectral data is selected as the reference band. Two variants of this approach are proposed involving preclustering of bands using: (1) the k-means and (2) the fuzzy k-means algorithms. The MI is derived from weighted entropy of the hyperspectral band and the reference band. The weights are computed from the cluster distance ratio and the cluster membership function for the k-means and fuzzy k-means algorithm, respectively. The selected bands were classified using random forest classifier. The proposed methods are evaluated with four datasets, two Hyperion datasets corresponding to the geographical locations of Dhundi and Solang in India, corresponding to snow covered terrain and two benchmark AVIRIS datasets of Indian Pines and Salinas. The average classification accuracy (0.995 and 0.721 for Dhundi and Solang datasets, respectively) for the proposed approach were observed to be better as compared with those from other state of the art techniques. Numéro de notice : A2021-568 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1665717 Date de publication en ligne : 18/09/2019 En ligne : https://doi.org/10.1080/10106049.2019.1665717 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98183
in Geocarto international > vol 36 n° 15 [15/08/2021] . - pp 1709 - 1731[article]Multi-scale coal fire detection based on an improved active contour model from Landsat-8 satellite and UAV images / Yanyan Gao in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)
PermalinkSemantic unsupervised change detection of natural land cover with multitemporal object-based analysis on SAR images / Donato Amitrano in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
PermalinkA novel unsupervised change detection method from remotely sensed imagery based on an improved thresholding algorithm / Sara Khanbani in Applied geomatics, vol 13 n° 1 (May 2021)
PermalinkHyperspectral image denoising via clustering-based latent variable in variational Bayesian framework / Peyman Azimpour in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
PermalinkRobust unsupervised small area change detection from SAR imagery using deep learning / Xinzheng Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
PermalinkDynamic committee machine with fuzzy-c-means clustering for total organic carbon content prediction from wireline logs / Yang Bai in Computers & geosciences, vol 146 (January 2021)
PermalinkLocal fuzzy geographically weighted clustering: a new method for geodemographic segmentation / George Grekousis in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
PermalinkCoupling fuzzy clustering and cellular automata based on local maxima of development potential to model urban emergence and expansion in economic development zones / Xun Liang in International journal of geographical information science IJGIS, vol 34 n° 10 (October 2020)
PermalinkA low-cost integrated MEMS-based INS/GPS vehicle navigation system with challenging conditions based on an optimized IT2FNN in occluded environments / Elahe S. Abdolkarimi in GPS solutions, Vol 24 n° 4 (October 2020)
PermalinkMountain summit detection with Deep Learning: evaluation and comparison with heuristic methods / Rocio Nahime Torres in Applied geomatics, vol 12 n° 2 (June 2020)
Permalink