Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > classification > classification ISODATA
classification ISODATASynonyme(s)Iterative self-organizing dataVoir aussi |
Documents disponibles dans cette catégorie (12)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A new data-adaptive network design methodology based on the k-means clustering and modified ISODATA algorithm for regional gravity field modeling via spherical radial basis functions / Rasit Ulug in Journal of geodesy, vol 96 n° 12 (December 2022)
[article]
Titre : A new data-adaptive network design methodology based on the k-means clustering and modified ISODATA algorithm for regional gravity field modeling via spherical radial basis functions Type de document : Article/Communication Auteurs : Rasit Ulug, Auteur ; Mahmut Onur Karslıoglu, Auteur Année de publication : 2022 Article en page(s) : n° 91 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] analyse de groupement
[Termes IGN] Auvergne
[Termes IGN] centroïde
[Termes IGN] champ de pesanteur local
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] classification barycentrique
[Termes IGN] classification ISODATA
[Termes IGN] Colorado (Etats-Unis)
[Termes IGN] fonction de base radiale
[Termes IGN] largeur de bande
[Termes IGN] modèle de géopotentiel local
[Termes IGN] modèle numérique de terrainRésumé : (auteur) In this study, a new data-adaptive network design methodology called k-SRBF is presented for the spherical radial basis functions (SRBFs) in regional gravity field modeling. In this methodology, the cluster centers (centroids) obtained by the k-means clustering algorithm are post-processed to construct a network of SRBFs by replacing the centroids with the SRBFs. The post-processing procedure is inspired by the heuristic method, Iterative Self-Organizing Data Analysis Technique (ISODATA), which splits clusters within the user-defined criteria to avoid over- and under-parameterization. These criteria are the minimum spherical distance between the centroids and the minimum number of samples for each cluster. The bandwidth (depth) of each SRBF is determined using the generalized cross-validation (GCV) technique in which only the observations within the radius of impact area (RIA) are used. The numerical tests are carried out with real and simulated data sets to investigate the effect of the user-defined criteria on the network design. Different bandwidth limits are also examined, and the appropriate lower and upper bandwidth limits are chosen based on the empirical signal covariance function and user-defined criteria. Also, additional tests are performed to verify the performance of the proposed methodology in combining different types of observations, such as terrestrial and airborne data available in Colorado. The results reveal that k-SRBF is an effective methodology to establish a data-adaptive network for SRBFs. Moreover, the proposed methodology improves the condition number of normal equation matrix so that the least-squares procedure can be applied without regularization considering the user-defined criteria and bandwidth limits. Numéro de notice : A2022-877 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s00190-022-01681-2 Date de publication en ligne : 22/11/2022 En ligne : https://doi.org/10.1007/s00190-022-01681-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102190
in Journal of geodesy > vol 96 n° 12 (December 2022) . - n° 91[article]Probabilistic unsupervised classification for large-scale analysis of spectral imaging data / Emmanuel Paradis in International journal of applied Earth observation and geoinformation, vol 107 (March 2022)
[article]
Titre : Probabilistic unsupervised classification for large-scale analysis of spectral imaging data Type de document : Article/Communication Auteurs : Emmanuel Paradis, Auteur Année de publication : 2022 Article en page(s) : n° 102675 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] analyse spectrale
[Termes IGN] classification barycentrique
[Termes IGN] classification ISODATA
[Termes IGN] classification non dirigée
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection de changement
[Termes IGN] entropie
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] Matlab
[Termes IGN] occupation du solRésumé : (auteur) Land cover classification of remote sensing data is a fundamental tool to study changes in the environment such as deforestation or wildfires. A current challenge is to quantify land cover changes with real-time, large-scale data from modern hyper- or multispectral sensors. A range of methods are available for this task, several of them being based on the k-means classification method which is efficient when classes of land cover are well separated. Here a new algorithm, called probabilistic k-means, is presented to solve some of the limitations of the standard k-means. It is shown that the new algorithm performs better than the standard k-means when the data are noisy. If the number of land cover classes is unknown, an entropy-based criterion can be used to select the best number of classes. The proposed new algorithm is implemented in a combination of R and C computer codes which is particularly efficient with large data sets: a whole image with more than 3 million pixels and covering more than 10,000 km2 can be analysed in a few minutes. Four applications with hyperspectral and multispectral data are presented. For the data sets with ground truth data, the overall accuracy of the probabilistic k-means was substantially improved compared to the standard k-means. One of these data sets includes more than 120 million pixels, demonstrating the scalability of the proposed approach. These developments open new perspectives for the large scale analysis of remote sensing data. All computer code are available in an open-source package called sentinel. Numéro de notice : A2022-193 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102675 Date de publication en ligne : 06/01/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102675 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99954
in International journal of applied Earth observation and geoinformation > vol 107 (March 2022) . - n° 102675[article]The potential of LiDAR and UAV-photogrammetric data analysis to interpret archaeological sites: A case study of Chun Castle in South-West England / Israa Kadhim in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)
[article]
Titre : The potential of LiDAR and UAV-photogrammetric data analysis to interpret archaeological sites: A case study of Chun Castle in South-West England Type de document : Article/Communication Auteurs : Israa Kadhim, Auteur ; Fanar M. Abed, Auteur Année de publication : 2021 Article en page(s) : n° 41 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] château
[Termes IGN] classification ISODATA
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Cornouailles
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image captée par drone
[Termes IGN] photogrammétrie aérienne
[Termes IGN] semis de points
[Termes IGN] site archéologique
[Termes IGN] structure-from-motionRésumé : (auteur) With the increasing demands to use remote sensing approaches, such as aerial photography, satellite imagery, and LiDAR in archaeological applications, there is still a limited number of studies assessing the differences between remote sensing methods in extracting new archaeological finds. Therefore, this work aims to critically compare two types of fine-scale remotely sensed data: LiDAR and an Unmanned Aerial Vehicle (UAV) derived Structure from Motion (SfM) photogrammetry. To achieve this, aerial imagery and airborne LiDAR datasets of Chun Castle were acquired, processed, analyzed, and interpreted. Chun Castle is one of the most remarkable ancient sites in Cornwall County (Southwest England) that had not been surveyed and explored by non-destructive techniques. The work outlines the approaches that were applied to the remotely sensed data to reveal potential remains: Visualization methods (e.g., hillshade and slope raster images), ISODATA clustering, and Support Vector Machine (SVM) algorithms. The results display various archaeological remains within the study site that have been successfully identified. Applying multiple methods and algorithms have successfully improved our understanding of spatial attributes within the landscape. The outcomes demonstrate how raster derivable from inexpensive approaches can be used to identify archaeological remains and hidden monuments, which have the possibility to revolutionize archaeological understanding. Numéro de notice : A2021-146 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10010041 Date de publication en ligne : 19/01/2021 En ligne : https://doi.org/10.3390/ijgi10010041 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97053
in ISPRS International journal of geo-information > vol 10 n° 1 (January 2021) . - n° 41[article]Geospatial method for computing supplemental multi-decadal US coastal land use and land cover classification products, using Landsat data and C-CAP products / Joseph P. Spruce in Geocarto international, vol 29 n° 5 - 6 (August - October 2014)
[article]
Titre : Geospatial method for computing supplemental multi-decadal US coastal land use and land cover classification products, using Landsat data and C-CAP products Type de document : Article/Communication Auteurs : Joseph P. Spruce, Auteur ; James C. Smoot, Auteur ; Jean T. Ellis, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 470-485 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification ISODATA
[Termes IGN] classification non dirigée
[Termes IGN] détection de changement
[Termes IGN] image Landsat
[Termes IGN] image optique
[Termes IGN] occupation du sol
[Termes IGN] surveillance du littoralRésumé : (auteur) This paper discusses the development and implementation of a method that can be used with multi-decadal Landsat data for computing general coastal US land use and land cover (LULC) maps consisting of seven classes. With Mobile Bay, Alabama as the study region, the method that was applied to derive LULC products for nine dates across a 34-year time span. Classifications were computed and refined using decision rules in conjunction with unsupervised classification of Landsat data and Coastal Change and Analysis Program value-added products. Each classification’s overall accuracy was assessed by comparing stratified random locations to available high spatial resolution satellite and aerial imagery, field survey data and raw Landsat RGBs. Overall classification accuracies ranged from 83 to 91% with overall κ statistics ranging from 0.78 to 0.89. Accurate classifications were computed for all nine dates, yielding effective results regardless of season and Landsat sensor. This classification method provided useful map inputs for computing LULC change products. Numéro de notice : A2014-407 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2013.798357 Date de publication en ligne : 04/06/2013 En ligne : https://doi.org/10.1080/10106049.2013.798357 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=73944
in Geocarto international > vol 29 n° 5 - 6 (August - October 2014) . - pp 470-485[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2014031 RAB Revue Centre de documentation En réserve L003 Disponible Analyse par télédétection des paysages agraires des villages de Barani, Sampieri et Orodara (Burkina Faso) / Marius Yao (2013)
Titre : Analyse par télédétection des paysages agraires des villages de Barani, Sampieri et Orodara (Burkina Faso) Type de document : Mémoire Auteurs : Marius Yao, Auteur Editeur : Champs/Marne : Université Paris-Est Marne-la-Vallée UPEM Année de publication : 2013 Importance : 50 p. Format : 21 x 30 cm Note générale : Bibliographie
Mémoire de master 2ème année Electronique, Télécommunication, Géomatique, spécialité Information géographiqueLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] Burkina Faso
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification ISODATA
[Termes IGN] composition colorée
[Termes IGN] données de terrain
[Termes IGN] image Landsat-TM
[Termes IGN] occupation du sol
[Termes IGN] paysage agricole
[Termes IGN] villageIndex. décimale : DSIG Mémoires du master 2 IG, du master 2 SIG, de l'ex DEA SIG Résumé : (Auteur) Cette étude a été réalisée dans le cadre d'un projet de recherche, financé par la région Centre, intitulé « Stimulation biologique des sols et gestion socio-économique des agrosystèmes au Burkina Faso ». Une analyse des paysages agraires a été réalisée pour les 3 villages étudiés. Ils sont localisés dans différentes régions du Burkina Faso (villages de Sampieri à l'Est, Barani à l'Ouest et Orodara au Sud) et dans des contextes pédoclimatiques et culturels variés. L'étude a consisté à analyser les différentes données disponibles en télédétection (images satellites) afin de réaliser une cartographie de l'occupation des sols, connaître les paysages actuels puis passés et suivre ainsi leur évolution. Ce travail avait deux objectifs : alimenter un système d'information géographique nécessaire au projet de recherche et mener plus spécifiquement une réflexion sur l'évolution des paysages suite à des événements climatiques (sécheresse et inondation) ou des aménagements (pratiques agricoles avec des cultures de rendement, construction de routes). Note de contenu : INTRODUCTION
CHAPITRE 1 : CADRE GENERAL DE L'ETUDE
1. Localisation des zones d'étude
2. Climatologie
CHAPITRE 2: MATERIELS ET METHODE
1. Matériels utilisés
2. Méthodes de travail
CHAPITRE 3 : TRAITEMENTS NUMERIQUES DES DONNEES ET INTERPRETATION
1. Composition colorée des images Landsat TM de 2009 (aux deux saisons)
2. Courbes de réponses spectrales des échantillons de parcelles
3. Confrontation de la composition colorée aux données terrain
4. Discussion sur les compositions colorées des images Landsat TM de 1986 et de 2009
5. Résultats des classifications
CONCLUSIONNuméro de notice : 18957 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Mémoire masters divers Organisme de stage : Ecole nationale Supérieure de la Nature et du Paysage Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=51023 Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 18957-01 DSIG Livre Centre de documentation En réserve Mezzanine Disponible Synthesizing urban remote sensing through application, scale, data and case studies / E.A. Wentz in Geocarto international, vol 27 n° 5 (August 2012)PermalinkDelineation of impervious surface from multispectral imagery and lidar incorporating knowledge based expert system rules / K. Germaine in Photogrammetric Engineering & Remote Sensing, PERS, vol 77 n° 1 (January 2011)PermalinkLand cover classification of the North China Plain using MODIS-EVI time series / Z. Xia in ISPRS Journal of photogrammetry and remote sensing, vol 63 n° 4 (July - August 2008)PermalinkA time-efficient method for anomaly detection in hyperspectral images / O. Duran in IEEE Transactions on geoscience and remote sensing, vol 45 n° 12 Tome 1 (December 2007)PermalinkApport de la classification combinée supervisée et non supervisée d'une image Landsat ETM+ à la cartographie géologique de la boutonnière de Kerdous, anti-atlas, Maroc / M. Hakdaoui in Photo interprétation, vol 42 n° 2 (Juin 2006)PermalinkA comparison of fuzzy vs. augmented-ISODATA classification algorithms for cloud-shadow discrimination from Landsat images / A.M. Melesse in Photogrammetric Engineering & Remote Sensing, PERS, vol 68 n° 9 (September 2002)PermalinkA synergic automatic clustering technique (syneract) for multispectral image analysis / K.Y. Huang in Photogrammetric Engineering & Remote Sensing, PERS, vol 68 n° 1 (January 2002)Permalink