Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > classification > classification semi-dirigée
classification semi-dirigéeSynonyme(s)classification semi-supervisée |
Documents disponibles dans cette catégorie (37)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
The cellular automata approach in dynamic modelling of land use change detection and future simulations based on remote sensing data in Lahore Pakistan / Muhammad Nasar Ahmad in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 1 (January 2023)
[article]
Titre : The cellular automata approach in dynamic modelling of land use change detection and future simulations based on remote sensing data in Lahore Pakistan Type de document : Article/Communication Auteurs : Muhammad Nasar Ahmad, Auteur ; Zhenfeng Shao, Auteur ; Akib Javed, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 47 - 55 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] automate cellulaire
[Termes IGN] carte thématique
[Termes IGN] classification semi-dirigée
[Termes IGN] détection de changement
[Termes IGN] données vectorielles
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] MNS SRTM
[Termes IGN] modèle dynamique
[Termes IGN] occupation du sol
[Termes IGN] Pakistan
[Termes IGN] surveillance de l'urbanisation
[Termes IGN] utilisation du solRésumé : (auteur) Rapid urbanization has become an immense problem in Lahore city, causing various socio-economic and environmental problems. Therefore, it is noteworthy to monitor land use/land cover (LULC) change detection and future LULC patterns in Lahore. The present study focuses on evaluating the current extent and modeling the future LULC developments in Lahore, Pakistan. Therefore, the semi-automatic classification model has been applied for the classification of Landsat satellite imagery from 2000 to 2020. And the Modules of Land Use Change Evaluation (MOLUSCE) cellular automata (CA-ANN) model was implemented to simulate future land use trends for the years 2030 and 2040. This study project made use of Landsat, Shuttle Radar Topography Mission Digital Elevation Model, and vector data. The research methodology includes three main steps: (i) semi-automatic land use classification using Landsat data from 2000 to 2020; (ii) future land use prediction using the CA-ANN (MOLUSCE) model; and (iii) monitoring change detection and interpretation of results. The research findings indicated that there was a rise in urban areas and a decline in vegetation, barren land, and water bodies for both the past and future projections. The results also revealed that about 27.41% of the urban area has been increased from 2000 to 2020 with a decrease of 42.13% in vegetation, 2.3% in barren land, and 6.51% in water bodies, respectively. The urban area is also expected to grow by 23.15% between 2020 and 2040, whereas vegetation, barren land, and water bodies will all decline by 28.05%, 1.8%, and 12.31%, respectively. Results can also aid in the long-term, sustainable planning of the city. It was also observed that the majority of the city's urban area expansion was found to have occurred in the city's eastern and southern regions. This research also suggests that decision-makers and municipal Government should reconsider city expansion strategies. Moreover, the future city master plans of 2050 must emphasize the relevance of rooftop urban planting and natural resource conservation. Numéro de notice : A2023-047 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.14358/PERS.22-00102R2 Date de publication en ligne : 01/01/2023 En ligne : https://doi.org/10.14358/PERS.22-00102R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102357
in Photogrammetric Engineering & Remote Sensing, PERS > vol 89 n° 1 (January 2023) . - pp 47 - 55[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2023011 SL Revue Centre de documentation Revues en salle Disponible Semi-supervised adversarial recognition of refined window structures for inverse procedural façade modelling / Han Hu in ISPRS Journal of photogrammetry and remote sensing, vol 192 (October 2022)
[article]
Titre : Semi-supervised adversarial recognition of refined window structures for inverse procedural façade modelling Type de document : Article/Communication Auteurs : Han Hu, Auteur ; Xinrong Liang, Auteur ; Yulin Ding, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 215 - 231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification semi-dirigée
[Termes IGN] échantillonnage de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] façade
[Termes IGN] fenêtre (bâtiment)
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] photographie aérienne oblique
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) Deep learning methods are typically data-hungry and require many labelled samples. Unfortunately, the amount of effort required to label the data has significantly hindered the application of deep learning methods, especially in 3D modelling tasks requiring heterogeneous samples. This paper proposes a semi-supervised adversarial recognition strategy embedded in the inverse procedural modelling engine to reduce data annotation costs for learning to model 3D façades. Beginning with textured level-of-details models, we use convolutional neural networks to recognise the types and estimate the parameters of windows from image patches. The window types and parameters are then assembled into the procedural grammar. A simple procedural engine is built inside off-the-shelf 3D modelling software, producing fine-grained window geometries. To obtain a useful model from a few labelled samples, we leverage a generative adversarial network to train the feature extractor in a semi-supervised manner. The adversarial training strategy exploits the unlabelled data to stabilise the training phase. Experiments using publicly available façade image datasets reveal that the proposed methods can improve classification accuracy and parameter estimation by approximately 10% and 50%, respectively, under the same network structure. In addition, performance gains are more pronounced when testing against unseen data featuring different façade styles. Numéro de notice : A2022-666 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.08.014 Date de publication en ligne : 30/08/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.08.014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101528
in ISPRS Journal of photogrammetry and remote sensing > vol 192 (October 2022) . - pp 215 - 231[article]Detecting interchanges in road networks using a graph convolutional network approach / Min Yang in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
[article]
Titre : Detecting interchanges in road networks using a graph convolutional network approach Type de document : Article/Communication Auteurs : Min Yang, Auteur ; Chenjun Jiang, Auteur ; Xiongfeng Yan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1119 - 1139 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse vectorielle
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification semi-dirigée
[Termes IGN] détection d'objet
[Termes IGN] échangeur routier
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] modélisation
[Termes IGN] noeud
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Detecting interchanges in road networks benefit many applications, such as vehicle navigation and map generalization. Traditional approaches use manually defined rules based on geometric, topological, or both properties, and thus can present challenges for structurally complex interchange. To overcome this drawback, we propose a graph-based deep learning approach for interchange detection. First, we model the road network as a graph in which the nodes represent road segments, and the edges represent their connections. The proposed approach computes the shape measures and contextual properties of individual road segments for features characterizing the associated nodes in the graph. Next, a semi-supervised approach uses these features and limited labeled interchanges to train a graph convolutional network that classifies these road segments into an interchange and non-interchange segments. Finally, an adaptive clustering approach groups the detected interchange segments into interchanges. Our experiment with the road networks of Beijing and Wuhan achieved a classification accuracy >95% at a label rate of 10%. Moreover, the interchange detection precision and recall were 79.6 and 75.7% on the Beijing dataset and 80.6 and 74.8% on the Wuhan dataset, respectively, which were 18.3–36.1 and 17.4–19.4% higher than those of the existing approaches based on characteristic node clustering. Numéro de notice : A2022-404 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2024195 Date de publication en ligne : 11/03/2022 En ligne : https://doi.org/10.1080/13658816.2021.2024195 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100716
in International journal of geographical information science IJGIS > vol 36 n° 6 (June 2022) . - pp 1119 - 1139[article]A phenology-based vegetation index classification (PVC) algorithm for coastal salt marshes using Landsat 8 images / Jing Zeng in International journal of applied Earth observation and geoinformation, vol 110 (June 2022)
[article]
Titre : A phenology-based vegetation index classification (PVC) algorithm for coastal salt marshes using Landsat 8 images Type de document : Article/Communication Auteurs : Jing Zeng, Auteur ; Yonghua Sun, Auteur ; Peirun Cao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102776 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] classification par arbre de décision
[Termes IGN] classification semi-dirigée
[Termes IGN] image Landsat-8
[Termes IGN] indice de végétation
[Termes IGN] Kiangsou (Chine)
[Termes IGN] marais salant
[Termes IGN] phénologie
[Termes IGN] réflectance de surfaceRésumé : (auteur) Coastal salt marshes, as a globally significant intertidal ecosystem, are highly productive but extremely fragile and unstable. Mapping coastal salt marshes accurately is the basis of assessing global climate change, biological invasion, and coastal erosion. Using Landsat 8 images, this paper integrated the advantages of pixel- and phenology-based algorithms and vegetation indices in vegetation classification. An enhanced phenology-based vegetation index classification (PVC) algorithm is proposed to obtain the spatial distribution and community composition of coastal salt marshes in Bohai Sea of China accurately and quickly. The results showed that (1) the coastal redness vegetation index (CRVI) can be used to extract Suaeda spp. effectively, and the phenology-based vegetation indices (PVIs) dataset can alleviate the spatial variability of phenology in coastal salt marshes; (2) the crucial phenological periods for identifying coastal salt marshes are May, October, and November, and the optimal PVIs are consistent with the phenological characteristics of salt marshes; (3) during the year 2018–2019, the overall accuracy (OA) of the PVC algorithm in Yancheng coast of Jiangsu Province and Bohai Sea coast reached 80.49 % and 90.8 % respectively. A total of 14,763.39 ha of salt marshes were found in the coastal area of Bohai Sea, and Shandong Province had the most abundant types of salt marshes and the largest area; (4) the classification model based on the PVC algorithm is stable and scalable in 2016–2017 and 2020–2021, with the OA of 89.19% and 86.67% respectively. These results demonstrate the value of the PVC algorithm in vegetation classification, and this study can provide a referable semi-automatic vegetation classification method for other coastal areas. Numéro de notice : A2022-551 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102776 Date de publication en ligne : 10/05/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101154
in International journal of applied Earth observation and geoinformation > vol 110 (June 2022) . - n° 102776[article]Determination of building flood risk maps from LiDAR mobile mapping data / Yu Feng in Computers, Environment and Urban Systems, vol 93 (April 2022)
[article]
Titre : Determination of building flood risk maps from LiDAR mobile mapping data Type de document : Article/Communication Auteurs : Yu Feng, Auteur ; Qing Xiao, Auteur ; Claus Brenner, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101759 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] bâtiment
[Termes IGN] cartographie d'urgence
[Termes IGN] cartographie des risques
[Termes IGN] classification semi-dirigée
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] façade
[Termes IGN] infiltration
[Termes IGN] inondation
[Termes IGN] modèle de simulation
[Termes IGN] prévention des risques
[Termes IGN] risque naturel
[Termes IGN] segmentation sémantiqueRésumé : (auteur) With increasing urbanization, flooding is a major challenge for many cities today. Based on forecast precipitation, topography, and pipe networks, flood simulations can provide early warnings for areas and buildings at risk of flooding. Basement windows, doors, and underground garage entrances are common places where floodwater can flow into a building. Some buildings have been prepared or designed considering the threat of flooding, but others have not. Therefore, knowing the heights of these facade openings helps to identify places that are more susceptible to water ingress. However, such data is not yet readily available in most cities. Traditional surveying of the desired targets may be used, but this is a very time-consuming and laborious process. Instead, mobile mapping using LiDAR (light detection and ranging) is an efficient tool to obtain a large amount of high-density 3D measurement data. To use this method, it is required to extract the desired facade openings from the data in a fully automatic manner. This research presents a new process for the extraction of windows and doors from LiDAR mobile mapping data. Deep learning object detection models are trained to identify these objects. Usually, this requires to provide large amounts of manual annotations.
In this paper, we mitigate this problem by leveraging a rule-based method. In a first step, the rule-based method is used to generate pseudo-labels. A semi-supervised learning strategy is then applied with three different levels of supervision. The results show that using only automatically generated pseudo-labels, the learning-based model outperforms the rule-based approach by 14.6% in terms of F1-score. After five hours of human supervision, it is possible to improve the model by another 6.2%. By comparing the detected facade openings' heights with the predicted water levels from a flood simulation model, a map can be produced which assigns per-building flood risk levels. Thus, our research provides a new geographic information layer for fine-grained urban emergency response. This information can be combined with flood forecasting to provide a more targeted disaster prevention guide for the city's infrastructure and residential buildings. To the best of our knowledge, this work is the first attempt to achieve such a large scale, fine-grained building flood risk mapping.Numéro de notice : A2022-196 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101759 Date de publication en ligne : 01/02/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101759 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99964
in Computers, Environment and Urban Systems > vol 93 (April 2022) . - n° 101759[article]Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation / Yansheng Li in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)PermalinkGraph convolutional networks by architecture search for PolSAR image classification / Hongying Liu in Remote sensing, vol 13 n° 7 (April-1 2021)PermalinkA graph-based semi-supervised approach to classification learning in digital geographies / Pengyuan Liu in Computers, Environment and Urban Systems, vol 86 (March 2021)PermalinkUsing automated vegetation cover estimation from close-range photogrammetric point clouds to compare vegetation location properties in mountain terrain / R. Niederheiser in GIScience and remote sensing, vol 58 n° 1 (February 2021)PermalinkNonlocal graph convolutional networks for hyperspectral image classification / Lichao Mou in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)PermalinkSemi-supervised PolSAR image classification based on improved tri-training with a minimum spanning tree / Shuang Wang in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)PermalinkSemi-automated framework for generating cycling lane centerlines on roads with roadside barriers from noisy MLS data / Yang Ma in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)PermalinkOnline flu epidemiological deep modeling on disease contact network / Liang Zhao in Geoinformatica, vol 24 n° 2 (April 2020)PermalinkInteractions between hierarchical learning and visual system modeling : image classification on small datasets / Thalita Firmo Drumond (2020)PermalinkPermalink