Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > classification > morphologie mathématique
morphologie mathématiqueVoir aussi |
Documents disponibles dans cette catégorie (149)



Etendre la recherche sur niveau(x) vers le bas
K-means clustering based on omnivariance attribute for building detection from airborne lidar data / Renato César Dos santos in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
![]()
[article]
Titre : K-means clustering based on omnivariance attribute for building detection from airborne lidar data Type de document : Article/Communication Auteurs : Renato César Dos santos, Auteur ; Mauricio Galo, Auteur ; A.F. Habib, Auteur Année de publication : 2022 Article en page(s) : pp 111 - 118 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par nuées dynamiques
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] morphologie mathématiqueRésumé : (auteur) Building detection is an important process in urban applications. In the last decades, 3D point clouds derived from airborne LiDAR have been widely explored. In this paper, we propose a building detection method based on K-means clustering and the omnivariance attribute derived from eigenvalues. The main contributions lie on the automatic detection without the need for training and optimal neighborhood definition for local attribute estimation. Additionally, one refinement step based on mathematical morphology (MM) operators to minimize the classification errors (commission and omission errors) is proposed. The experiments were conducted in three study areas. In general, the results indicated the potential of proposed method, presenting an average Fscore around 97%. Numéro de notice : A2022-431 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-111-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-111-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100737
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 111 - 118[article]Improving local adaptive filtering method employed in radiometric correction of analogue airborne campaigns / Lâmân Lelégard (2022)
![]()
Titre : Improving local adaptive filtering method employed in radiometric correction of analogue airborne campaigns Type de document : Article/Communication Auteurs : Lâmân Lelégard , Auteur ; Arnaud Le Bris
, Auteur ; Sébastien Giordano
, Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B3 Conférence : ISPRS 2022, XXIV ISPRS Congress “Imaging today, foreseeing tomorrow” - Commission 3 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 1217 - 1222 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] contraste local
[Termes IGN] correction radiométrique
[Termes IGN] fenêtre (informatique)
[Termes IGN] filtre de Wallis
[Termes IGN] morphologie mathématiqueRésumé : (auteur) An orthophotomosaic is as a single image that can be layered on a map. It is produced from a set of aerial images impaired by radiometric inhomogeneity mostly due to atmospheric phenomena, like hotspot, haze or high altitude clouds shadows as well as the camera itself, like lens vignetting. These create some unsightly radiometric inhomogeneity in the mosaic that could be corrected by using a local adaptive filter, also named Wallis filter. Yet this solution leads to a significant loss of contrast at small scales. This current work introduces two elementary studies. In a first time, in order to quantify the loss of contrast due to the use of Wallis filter, a simple multi-scale score is proposed based on mathematical morphology operations. In a second time, an optimal window size for the filter is identified by considering some systematic radiometric behaviours in the images forming the mosaic through Principal Component Analysis (PCA). These two elementary studies are preliminary steps leading to a method of radiometric correction combining Wallis filtering and PCA. Numéro de notice : C2022-015 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B3-2022-1217-2022 Date de publication en ligne : 31/05/2022 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1217-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100841 3D urban scene understanding by analysis of LiDAR, color and hyperspectral data / David Duque-Arias (2021)
![]()
Titre : 3D urban scene understanding by analysis of LiDAR, color and hyperspectral data Type de document : Thèse/HDR Auteurs : David Duque-Arias, Auteur ; Beatriz Marcotegui, Directeur de thèse ; Jean-Emmanuel Deschaud, Directeur de thèse Editeur : Paris : Université Paris Sciences et Lettres Année de publication : 2021 Importance : 191 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université PSL, Spécialité : Morphologie MathématiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse de scène 3D
[Termes IGN] apprentissage profond
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] graphe
[Termes IGN] image hyperspectrale
[Termes IGN] image optique
[Termes IGN] modélisation géométrique de prise de vue
[Termes IGN] monde virtuel
[Termes IGN] morphologie mathématique
[Termes IGN] navigation autonome
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] traitement d'imageIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Point clouds have attracted the interest of the research community over the last years. Initially, they were mostly used for remote sensing applications. More recently, thanks to the development of low-cost sensors and the publication of some open source libraries, they have become very popular and have been applied to a wider range of applications. One of them is the autonomous vehicle where many efforts have been made in the last century to make it real. A very important bottleneck nowadays for the autonomous vehicle is the evaluation of the proposed algorithms. Due to the huge number of possible scenarios, it is not feasible to perform it in real life. An alternative is to simulate virtual environments where all possible configurations can be set up beforehand. However, they are not as realistic as the real world is. In this thesis, we studied the pertinence of including hyperspectral images in the creation of new virtual environments. Furthermore, we proposed new methods to improve 3D scene understanding for autonomous vehicles. During this research, we addressed the following topics. Firstly, we analyzed the spectrum in color and hyperspectral images because it provides a description about the electromagnetic radiation at different frequencies. Some applications rely only on visible colors. In other cases, such as the characterization of materials, the study of the invisible range is required. For this purpose, we proposed a simplified spectrum representation that preserves its diversity, the Graph-based color lines (GCL) model. Secondly, we studied the integration of hyperspectral images, color images and point clouds in urban scenes. The analysis was carried out by using the data acquired during this thesis in the context of the REPLICA project FUI 24. We inspected spectral signatures of different objects and reflectance histograms of the images. The obtained results demonstrate that urban scenes are challenging scenarios for current technology of hyperspectral cameras due to the presence of uncontrolled light conditions and moving actors. Thirdly, we worked with 3D point clouds from urban scenes that have proved to be a reliable type of data, much less sensitive to illumination variations than cameras. They are more accurate than color images and permit to obtain precise 3D models of urban environments. Deep learning techniques are very popular in this domain. A key element of these techniques is the loss function that drives the optimization process. We proposed two new loss functions to perform semantic segmentation tasks: power Jaccard loss and hierarchical loss. They obtained a higher performance in evaluated scenarios than classical losses not only in 3D point clouds but also in color and gray scale images. Moreover, we proposed a new dataset (Paris Carla 3D Dataset) composed of synthetic and real point clouds from urban scenes. It is expected to be used by the research community for different automatic tasks such as semantic segmentation, instance segmentation and scene completion. Finally, we conducted a detailed analysis of the influence of RGB features in semantic segmentation of urban point clouds. We compared several training scenarios and identified that color systematically improves the performance in certain classes. It demonstrates that including a more detailed description of the spectrum, when the hyperspectral cameras technology increases its sensitivity, can be useful to improve scene description of urban scenes. Note de contenu : 1- Introduction
2- Data used in this thesis
3- Graph based color lines (GCL)
4- Study of REPLICA data
5- Power Jaccard losses for semantic segmentation
6- Segmentation of point clouds
7- Conclusions and perspectivesNuméro de notice : 28464 Affiliation des auteurs : non IGN Thématique : IMAGERIE/MATHEMATIQUE/URBANISME Nature : Thèse française Note de thèse : Thèse de Doctorat : Morphologie Mathématique : Paris sciences et lettres : 2021 Organisme de stage : Centre de Morphologie Mathématique DOI : sans En ligne : https://pastel.archives-ouvertes.fr/tel-03434199/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99076 Combining deep learning and mathematical morphology for historical map segmentation / Yizi Chen (2021)
![]()
Titre : Combining deep learning and mathematical morphology for historical map segmentation Type de document : Chapitre/Contribution Auteurs : Yizi Chen, Auteur ; Edwin Carlinet, Auteur ; Joseph Chazalon, Auteur ; Clément Mallet , Auteur ; Bertrand Duménieu
, Auteur ; Julien Perret
, Auteur
Editeur : Berlin, Heidelberg, Vienne, New York, ... : Springer Année de publication : 2021 Collection : Lecture notes in Computer Science, ISSN 0302-9743 num. 12708 Projets : SODUCO / Perret, Julien Conférence : DGMM 2021, 1st International Joint Conference on Discrete Geometry and Mathematical Morphology 24/05/2021 27/05/2021 Uppsala Suède Proceedings Springer Importance : pp 79 - 92 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse diachronique
[Termes IGN] apprentissage profond
[Termes IGN] carte ancienne
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données maillées
[Termes IGN] morphologie mathématique
[Termes IGN] vectorisationRésumé : (auteur) The digitization of historical maps enables the study of ancient, fragile, unique, and hardly accessible information sources. Main map features can be retrieved and tracked through the time for subsequent thematic analysis. The goal of this work is the vectorization step, i.e., the extraction of vector shapes of the objects of interest from raster images of maps. We are particularly interested in closed shape detection such as buildings, building blocks, gardens, rivers, etc. in order to monitor their temporal evolution. Historical map images present significant pattern recognition challenges. The extraction of closed shapes by using traditional Mathematical Morphology (MM) is highly challenging due to the overlapping of multiple map features and texts. Moreover, state-of-the-art Convolutional Neural Networks (CNN) are perfectly designed for content image filtering but provide no guarantee about closed shape detection. Also, the lack of textural and color information of historical maps makes it hard for CNN to detect shapes that are represented by only their boundaries. Our contribution is a pipeline that combines the strengths of CNN (efficient edge detection and filtering) and MM (guaranteed extraction of closed shapes) in order to achieve such a task. The evaluation of our approach on a public dataset shows its effectiveness for extracting the closed boundaries of objects in historical maps. Numéro de notice : H2021-001 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE Nature : Chapître / contribution nature-HAL : ChOuvrScient DOI : 10.1007/978-3-030-76657-3_5 Date de publication en ligne : 16/05/2021 En ligne : http://dx.doi.org/10.1007/978-3-030-76657-3_5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96739 Contributions to graph-based hierarchical analysis for images and 3D point clouds / Leonardo Gigli (2021)
![]()
Titre : Contributions to graph-based hierarchical analysis for images and 3D point clouds Type de document : Thèse/HDR Auteurs : Leonardo Gigli, Auteur ; Beatriz Marcotegui, Directeur de thèse Editeur : Paris : Université Paris Sciences et Lettres Année de publication : 2021 Importance : 177 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université PSL, Spécialité : Morphologie MathématiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage automatique
[Termes IGN] arbre aléatoire minimum
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction du réseau routier
[Termes IGN] morphologie mathématique
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] réseau neuronal de graphes
[Termes IGN] segmentation d'image
[Termes IGN] semis de points
[Termes IGN] texture d'image
[Termes IGN] théorie des graphesIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Graphs are powerful mathematical structures representing a set of objects and the underlying links between pairs of objects somehow related. They are becoming increasingly popular in data science in general and in particular in image or 3D point cloud analysis. Among the wide spectra of applications, they are involved in most of the hierarchical approaches.Hierarchies are particularly important because they allow us to efficiently organize the information required and to analyze the problems at different levels of detail. In this thesis, we address the following topics. Many morphological hierarchical approaches rely on the Minimum Spanning Tree (MST). We propose an algorithm for MST computation in streaming based on a graph decomposition strategy. Thanks to this decomposition, larger images can be processed or can benefit from partial reliable information while the whole image is not completely available.Recent LiDAR developments are able to acquire large-scale and precise 3D point clouds. Many applications, such as infrastructure monitoring, urban planning, autonomous driving, precision forestry, environmental assessment, archaeological discoveries, to cite a few, are under development nowadays. We introduce a ground detection algorithm and compare it with the state of the art. The impact of reducing the point cloud density with low-cost scanners is studied, in the context of an autonomous driving application. Finally, in many hierarchical methods similarities between points are given as input. However, the metric used to compute similarities influences the quality of the final results. We exploit metric learning as a complementary tool that helps to improve the quality of hierarchies. We demonstrate the capabilities of these methods in two contexts. The first one,a texture classification of 3D surfaces. Our approach ranked second in a task organized by SHREC’20 international challenge. The second one learning the similarity function together with the optimal hierarchical clustering, in a continuous feature-based hierarchical clustering formulation. Note de contenu : Introduction
1- Graph theory and clustering
2- Point clouds
3- Ground and road detection
4- Minimum spanning tree for data streams
5- Metric learning
6- Towards Morphological Convolutions on Graphs
ConclusionsNuméro de notice : 28623 Affiliation des auteurs : non IGN Thématique : IMAGERIE/MATHEMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Morphologie Mathématique : Paris Sciences et Lettres : 2021 Organisme de stage : Centre de Morphologie Mathématique DOI : sans En ligne : https://pastel.archives-ouvertes.fr/tel-03512298/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99543 Object detection using component-graphs and ConvNets with application to astronomical images / Thanh Xuan Nguyen (2021)
PermalinkCrater detection and registration of planetary images through marked point processes, multiscale decomposition, and region-based analysis / David Solarna in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
PermalinkPermalinkPermalinkIndividual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images / Fabien Hubert Wagner in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part B (November 2018)
PermalinkExtraction of building roof planes with stratified random sample consensus / André C. Carrilho in Photogrammetric record, vol 33 n° 163 (September 2018)
PermalinkImportant LiDAR metrics for discriminating forest tree species in Central Europe / Yifang Shi in ISPRS Journal of photogrammetry and remote sensing, vol 137 (March 2018)
PermalinkBuilding extraction from fused LiDAR and hyperspectral data using Random Forest Algorithm / Saeid Parsian in Geomatica [en ligne], vol 71 n° 4 (December 2017)
PermalinkMorphologically decoupled structured sparsity for rotation-invariant hyperspectral image analysis / Saurabh Prasad in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
PermalinkA simplified linear feature matching method using decision tree analysis, weighted linear directional mean, and topological relationships / Ick-Hoi Kim in International journal of geographical information science IJGIS, vol 31 n° 5-6 (May-June 2017)
Permalink