Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > classification > morphologie mathématique
morphologie mathématiqueVoir aussi |
Documents disponibles dans cette catégorie (153)



Etendre la recherche sur niveau(x) vers le bas
A hexagon-based method for polygon generalization using morphological operators / Lu Wang in International journal of geographical information science IJGIS, vol 37 n° 1 (January 2023)
![]()
[article]
Titre : A hexagon-based method for polygon generalization using morphological operators Type de document : Article/Communication Auteurs : Lu Wang, Auteur ; Tinghua Ai, Auteur ; Dirk Burghardt, Auteur ; Yilang Shen, Auteur ; Min Yang, Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] données maillées
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] morphologie mathématique
[Termes IGN] polygone
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Numerous methods based on square rasters have been proposed for polygon generalization. However, these methods ignore the inconsistent distance measurement among neighborhoods of squares, which may result in an imbalanced generalization in different directions. As an alternative raster, a hexagon has consistent connectivity and isotropic neighborhoods. This study proposed a hexagon-based method for polygon generalization using morphological operators. First, we defined three generalization operators: aggregation, elimination, and line simplification, based on hexagonal morphological operations. We then used corrective operations with selection, skeleton, and exaggeration to detect, classify, and correct the unreasonably reduced narrow parts of the polygons. To assess the effectiveness of the proposed method, we conducted experiments comparing the hexagonal raster to square raster and vector data. Unlike vector-based methods in which various algorithms simplified either areal objects or exterior boundaries, the hexagon-based method performed both simplifications simultaneously. Compared to the square-based method, the results of the hexagon-based method were more balanced in all neighborhood directions, matched better with the original polygons, and had smoother simplified boundaries. Moreover, it performed with shorter running time than the square-based method, where the minimal time difference was less than 1 min, and the maximal time difference reached more than 50 mins. Numéro de notice : A2023-071 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2108036 Date de publication en ligne : 10/08/2022 En ligne : https://doi.org/10.1080/13658816.2022.2108036 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101387
in International journal of geographical information science IJGIS > vol 37 n° 1 (January 2023)[article]Artificial intelligence techniques in extracting building and tree footprints using aerial imagery and LiDAR data / Saeideh Sahebi Vayghan in Geocarto international, vol 37 n° 10 ([01/06/2022])
![]()
[article]
Titre : Artificial intelligence techniques in extracting building and tree footprints using aerial imagery and LiDAR data Type de document : Article/Communication Auteurs : Saeideh Sahebi Vayghan, Auteur ; Mohammad Salmani, Auteur ; Neda Ghasemkhanic, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2967 - 2995 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme génétique
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification par réseau neuronal
[Termes IGN] détection d'arbres
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] empreinte
[Termes IGN] image aérienne
[Termes IGN] image optique
[Termes IGN] Inférence floue
[Termes IGN] morphologie mathématiqueRésumé : (auteur) One of the most important considerations in urban environments is the extraction of urban objects, with a high automation level. This study aims to present a new method which uses aerial images and LiDAR data to extract buildings and trees footprint in urban areas. In this study, high-elevation objects were extracted from the LiDAR data using the developed scan labeling method, and then the classification methods of Neural Networks (NN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Genetic Based K-Means algorithm (GBKMs) were used to separate buildings and trees and with the purpose of evaluating their performance. The features used for the classification were extracted from aerial images and LiDAR data, and the training data for the classification were selected automatically. Mathematical morphology functions were also used to process the classification results. The results show that NN and the ANFIS are more effective than the genetic-based K-Means algorithm in detecting small and large buildings. Numéro de notice : A2022-596 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1844311 En ligne : https://doi.org/10.1080/10106049.2020.1844311 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101300
in Geocarto international > vol 37 n° 10 [01/06/2022] . - pp 2967 - 2995[article]K-means clustering based on omnivariance attribute for building detection from airborne lidar data / Renato César Dos santos in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
![]()
[article]
Titre : K-means clustering based on omnivariance attribute for building detection from airborne lidar data Type de document : Article/Communication Auteurs : Renato César Dos santos, Auteur ; Mauricio Galo, Auteur ; A.F. Habib, Auteur Année de publication : 2022 Article en page(s) : pp 111 - 118 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par nuées dynamiques
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] morphologie mathématique
[Termes IGN] semis de pointsRésumé : (auteur) Building detection is an important process in urban applications. In the last decades, 3D point clouds derived from airborne LiDAR have been widely explored. In this paper, we propose a building detection method based on K-means clustering and the omnivariance attribute derived from eigenvalues. The main contributions lie on the automatic detection without the need for training and optimal neighborhood definition for local attribute estimation. Additionally, one refinement step based on mathematical morphology (MM) operators to minimize the classification errors (commission and omission errors) is proposed. The experiments were conducted in three study areas. In general, the results indicated the potential of proposed method, presenting an average Fscore around 97%. Numéro de notice : A2022-431 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-111-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-111-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100737
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 111 - 118[article]Éléments pour l'analyse et le traitement d'images : application à l'estimation de la qualité du bois / Rémy Decelle (2022)
![]()
Titre : Éléments pour l'analyse et le traitement d'images : application à l'estimation de la qualité du bois Type de document : Thèse/HDR Auteurs : Rémy Decelle, Auteur ; Isabelle Debled-Rennesson, Auteur ; Fleur Longuetaud, Auteur Editeur : Nancy, Metz : Université de Lorraine Année de publication : 2022 Importance : 214 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée pour l'obtention du Doctorat de l'Université de Lorraine, Mention InformatiqueLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aubier
[Termes IGN] cerne
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] duramen
[Termes IGN] filtre
[Termes IGN] grume
[Termes IGN] morphologie mathématique
[Termes IGN] niveau de gris (image)
[Termes IGN] optimisation par colonie de fourmis
[Termes IGN] qualité du bois
[Termes IGN] représentation discrète
[Termes IGN] segmentation d'image
[Termes IGN] seuillageIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Dans le contexte du changement climatique et de son atténuation, du développement de la bioéconomie circulaire, et d'une pression accrue qui en découle sur la ressource en bois, un des axes de recherche prioritaire est l'optimisation de la transformation de cette ressource qui peut se faire à différents niveaux. L'objectif ici est d'extraire des informations sur la qualité du bois à partir de l'analyse de sections transversales du grumes ou billons de bois en forêt ou en scierie. Pour estimer cette qualité, plusieurs caractéristiques visibles peuvent être extraites : zones d'aubier et de duramen, position de la moelle et du centre géométrique, le nombre de cernes et leur largeur. Dans un premier temps, nous nous intéressons à la segmentation de la grume dans l'image. Cette segmentation rend plus simple l'analyse des autres caractéristiques et permet de localiser le centre géométrique. Pour cela, nous proposons plusieurs approches. D'abord, des méthodes classiques issues du traitement d'images sont abordées, comme la méthode des K-Means ou les contours actifs. Nous utilisons également des réseaux de neurones convolutifs. Nous montrons l'avantage des réseaux de neurones par rapport à ces deux autres méthodes. La deuxième caractéristique estimée est la zone de duramen (zone centrale plus colorée). Nous proposons une nouvelle couche d'attention pour les réseaux de neurones utilisant la morphologie mathématique moins souvent utilisée. Les couches d'attention ont permis aux réseaux d'être plus performants en se focalisant sur les informations les plus pertinentes. Dans notre cadre, l'objectif de cette couche est double : réduire la quantité de paramètres et augmenter les performances. Notre couche d'attention montre de meilleures performances par rapport à d'autres couches d'attention. Dans un troisième temps, nous proposons d'analyser les cernes. Notre méthode est en trois grandes étapes. D'abord, un lissage directionnel pour rehausser les cernes (tout en gardant au mieux les contours) et réduire à la fois la texture intracernes et les marques de sciage. Puis, un seuillage adaptatif pour déterminer les zones de cernes potentiels. Enfin, un deuxième seuillage afin d'avoir les limites de cernes. À partir de la segmentation finale, l'analyse des cernes (nombre, largeur moyenne, etc.) est rendue possible. Enfin, l'estimation de la position de la moelle est abordée. Nous proposons une nouvelle approche originale basée sur l'algorithme des colonies de fourmis pour estimer la position de la moelle. L'utilisation de cet algorithme permet de s'abstraire d'une étape habituelle, à savoir l'accumulation des normales aux tangentes des cernes. Notre méthode montre de nombreux avantages par rapport aux approches de l'état de l'art, réseaux de neurones inclus. Dans une dernière partie, nous présenterons un travail en géométrie discrète : un filtre directionnel. Il estime les segments les plus longs en tout point d'un ensemble connexe. La présentation de cet outil est fait par le biais d'un filtre. En appliquant ce filtre, nous pouvons estimer des caractéristiques géométriques à l'échelle locale. Cet outil a pour objectif d'être appliqué aux cernes. Note de contenu : Introduction
1- Techniques de segmentation
2- Segmentation : les applications aux bois
3- Nouvelles approches du traitement d’images appliquées au bois
4- Détection de la moelle dans l’image
5- Filtre directionnel discret
6- ConclusionNuméro de notice : 24061 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Université de Lorraine : 2022 Organisme de stage : Laboratoire LORIA DOI : sans En ligne : https://hal.univ-lorraine.fr/tel-03794911/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102036
Titre : Generic programming in modern C++ for image processing Type de document : Thèse/HDR Auteurs : Michaël Roynard, Auteur ; Thierry Géraud, Directeur de thèse ; Edwin Carlinet, Directeur de thèse Editeur : Paris : Sorbonne Université Année de publication : 2022 Importance : 237 p. Format : 21 x 30 cm Note générale : bibliographie
Doctoral thesis submitted to fufill the requirements for the degree of Doctor of Sorbonne Université with the doctoral speciality of "Software Engineering and Image Processing"Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Langages informatiques
[Termes IGN] C++
[Termes IGN] langage de programmation
[Termes IGN] morphologie mathématique
[Termes IGN] programmation informatique
[Termes IGN] taxinomie
[Termes IGN] traitement d'imageIndex. décimale : THESE Thèses et HDR Résumé : (auteur) C++ is a multi-paradigm language that enables the initiated programmer to set up efficient image processing algorithms. This language strength comes from several aspects. C++ is high-level, which enables developing powerful abstractions and mixing different programming styles to ease the development. At the same time, C++ is low-level and can fully take advantage of the hardware to deliver the best performance. It is also very portable and highly compatible which allows algorithms to be called from high-level, fast-prototyping languages such as Python or Matlab. One of the most fundamental aspects where C++ really shines is generic programming. Generic programming makes it possible to develop and reuse bricks of software on objects (images) of different natures (types) without performance loss. Nevertheless,conciliating the aspects of genericity, efficiency, and simplicity is not trivial. Modern C++ (post-2011) has brought new features that made the language simpler and more powerful. In this thesis, we first explore one particular C++20aspect: the concepts, in order to build a concrete taxonomy of image related types and algorithms. Second, we explore another addition to C++20, ranges (and views), and we apply this design to image processing algorithms and image types in order to solve issues such as how hard it is to customize/tweak image processing algorithms. Finally, we explore possibilities regarding how we can offer a bridge between static (compile-time) generic C++ code and dynamic (runtime) Python code. We offer our own hybrid solution and benchmark its performance as well as discuss what can be done in the future with JIT technologies. Considering those three axes, we will address the issue regarding the way to conciliate generic programming, efficiency and ease of use. Note de contenu : I Context and History of Generic programming
1- Introduction
2- Generic programming (genericity)
II Applying Generic programming for Image processing in the static world
3- Taxonomy for Image Processing: Image types and algorithms
4- Image views
III Bringing Generic programming to the dynamic world
5- A bridge between the static world and the dynamic world
6- Conclusion and continuationNuméro de notice : 24083 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : PhD thesis : Software Engineering and Image Processing : Sorbonne Université : 2022 Organisme de stage : EPITA DOI : sans En ligne : https://theses.hal.science/tel-03922670 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102391 Improving local adaptive filtering method employed in radiometric correction of analogue airborne campaigns / Lâmân Lelégard (2022)
Permalink3D urban scene understanding by analysis of LiDAR, color and hyperspectral data / David Duque-Arias (2021)
PermalinkCombining deep learning and mathematical morphology for historical map segmentation / Yizi Chen (2021)
PermalinkContributions to graph-based hierarchical analysis for images and 3D point clouds / Leonardo Gigli (2021)
PermalinkObject detection using component-graphs and ConvNets with application to astronomical images / Thanh Xuan Nguyen (2021)
PermalinkCrater detection and registration of planetary images through marked point processes, multiscale decomposition, and region-based analysis / David Solarna in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
PermalinkPermalinkPermalinkIndividual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images / Fabien Hubert Wagner in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part B (November 2018)
PermalinkExtraction of building roof planes with stratified random sample consensus / André C. Carrilho in Photogrammetric record, vol 33 n° 163 (September 2018)
Permalink