Descripteur
Termes descripteurs IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > segmentation d'image > seuillage d'image
seuillage d'imageVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Deep learning for detecting and classifying ocean objects: application of YoloV3 for iceberg–ship discrimination / Frederik Hass in ISPRS International journal of geo-information, vol 9 n° 12 (December 2020)
![]()
[article]
Titre : Deep learning for detecting and classifying ocean objects: application of YoloV3 for iceberg–ship discrimination Type de document : Article/Communication Auteurs : Frederik Hass, Auteur ; Jamal Jokar Arsanjani, Auteur Année de publication : 2020 Article en page(s) : n° 758 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] Groenland
[Termes descripteurs IGN] hydrocarbure
[Termes descripteurs IGN] iceberg
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] navire
[Termes descripteurs IGN] océan
[Termes descripteurs IGN] seuillage d'image
[Termes descripteurs IGN] trafic maritimeRésumé : (auteur) Synthetic aperture radar (SAR) plays a remarkable role in ocean surveillance, with capabilities of detecting oil spills, icebergs, and marine traffic both at daytime and at night, regardless of clouds and extreme weather conditions. The detection of ocean objects using SAR relies on well-established methods, mostly adaptive thresholding algorithms. In most waters, the dominant ocean objects are ships, whereas in arctic waters the vast majority of objects are icebergs drifting in the ocean and can be mistaken for ships in terms of navigation and ocean surveillance. Since these objects can look very much alike in SAR images, the determination of what objects actually are still relies on manual detection and human interpretation. With the increasing interest in the arctic regions for marine transportation, it is crucial to develop novel approaches for automatic monitoring of the traffic in these waters with satellite data. Hence, this study aims at proposing a deep learning model based on YoloV3 for discriminating icebergs and ships, which could be used for mapping ocean objects ahead of a journey. Using dual-polarization Sentinel-1 data, we pilot-tested our approach on a case study in Greenland. Our findings reveal that our approach is capable of training a deep learning model with reliable detection accuracy. Our methodical approach along with the choice of data and classifiers can be of great importance to climate change researchers, shipping industries and biodiversity analysts. The main difficulties were faced in the creation of training data in the Arctic waters and we concluded that future work must focus on issues regarding training data. Numéro de notice : A2020-808 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9120758 date de publication en ligne : 19/12/2020 En ligne : https://doi.org/10.3390/ijgi9120758 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96953
in ISPRS International journal of geo-information > vol 9 n° 12 (December 2020) . - n° 758[article]Integrated Kalman filter of accurate ranging and tracking with wideband radar / Shaopeng Wei in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
![]()
[article]
Titre : Integrated Kalman filter of accurate ranging and tracking with wideband radar Type de document : Article/Communication Auteurs : Shaopeng Wei, Auteur ; Lei Zhang, Auteur ; Hongwei Liu, Auteur Année de publication : 2020 Article en page(s) : pp 8395 - 8411 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] bande spectrale
[Termes descripteurs IGN] filtrage bayésien
[Termes descripteurs IGN] filtre de Kalman
[Termes descripteurs IGN] inférence statistique
[Termes descripteurs IGN] largeur de bande
[Termes descripteurs IGN] phase
[Termes descripteurs IGN] poursuite de cible
[Termes descripteurs IGN] seuillage d'image
[Termes descripteurs IGN] signalRésumé : (auteur) Accurate ranging and wideband tracking are treated as two independent and separate processes in traditional radar systems. As a result, limited by low data rate due to nonsequential processing, accurate ranging usually performs low efficiency in practical application. Similarly, without applying accurate ranging, the data after thresholding and clustering are used in wideband tracking, leading to a significant decrease in tracking accuracy. In this article, an integrated Kalman filter of accurate ranging and tracking is proposed using methods of phase-derived-ranging and Bayesian inference in wideband radar. Besides the motion state, in this integrated Kalman filter, the complex-valued high-resolution range profile (HRRP) is also introduced as a reference signal by coherent integration in a sliding window, which incorporates target’s scattering distribution and phase characteristics. Corresponding kinetic equations are derived to predict the motion state and the reference signal in the next moment. A ranging process is constructed based on the received signal and the predicted reference signal in order to estimate innovation using methods of phase-derived-ranging and Bayesian inference, and a sequential update for motion state can be accomplished with the Kalman filter as well. In every recursion, the complex-valued reference signal is also updated by coherently integrating the latest pulses. The integrated Kalman filter takes full use of high range resolution and phase information, improving both efficiency and precision compared with conventional approaches of ranging and wideband tracking. Implemented in a sequential manner, the integrated Kalman filter can be applied in a real-time application, realizing simultaneous ranging with high precision and wideband tracking. Finally, simulated and real-measured experiments confirm the remarkable performance. Numéro de notice : A2020-740 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2987854 date de publication en ligne : 29/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2987854 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96367
in IEEE Transactions on geoscience and remote sensing > Vol 58 n° 12 (December 2020) . - pp 8395 - 8411[article]Efficient match pair selection for oblique UAV images based on adaptive vocabulary tree / San Jiang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
![]()
[article]
Titre : Efficient match pair selection for oblique UAV images based on adaptive vocabulary tree Type de document : Article/Communication Auteurs : San Jiang, Auteur ; Wanshou Jiang, Auteur Année de publication : 2020 Article en page(s) : pp 61 - 75 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes descripteurs IGN] analyse des correspondances
[Termes descripteurs IGN] appariement d'images
[Termes descripteurs IGN] image aérienne oblique
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] photogrammétrie aérienne
[Termes descripteurs IGN] seuillage d'image
[Termes descripteurs IGN] structure-from-motionRésumé : (Auteur) The primary contribution of this paper is an efficient match pair selection method for oblique unmanned aerial vehicle (UAV) images. First, high overlap degrees and spatial resolutions cause image and feature redundancies in vocabulary tree building and image indexing. To cope with this issue, an image selection strategy and a feature selection strategy are designed to decrease the total number of features. Second, by analysing the distribution of the similarity scores, an adaptive threshold selection method is implemented to determine the number of candidate match pairs for each query image, and it avoids the disadvantages of the fixed number and fixed proportion methods. Then, an algorithm, termed AVT-Expansion, is proposed for the match pair selection and simplification where the initial match pairs are first selected by using the adaptive vocabulary tree (AVT). To simplify the initial match pairs, the AVT method is integrated with our previous MST-Expansion algorithm, which is used to extract a match graph by analysing the image topological connection network. Finally, the proposed method is verified using three UAV datasets captured with different oblique multi-camera systems. Experimental results demonstrate that the efficiency of the vocabulary tree building is improved, with speed-up ratios ranging from 14 to 16, and that high image retrieval precision values are obtained for the three datasets. For match pair selection of oblique UAV images, the proposed method is an efficient solution. Numéro de notice : A2020-062 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.12.013 date de publication en ligne : 15/01/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.12.013 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94578
in ISPRS Journal of photogrammetry and remote sensing > vol 161 (March 2020) . - pp 61 - 75[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020031 SL Revue Centre de documentation Revues en salle Disponible 081-2020033 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A novel fire index-based burned area change detection approach using Landsat-8 OLI data / Sicong Liu in European journal of remote sensing, vol 53 n° 1 (2020)
![]()
[article]
Titre : A novel fire index-based burned area change detection approach using Landsat-8 OLI data Type de document : Article/Communication Auteurs : Sicong Liu, Auteur ; Yongjie Zheng, Auteur ; Michele Dalponte, Auteur ; Xiaohua Tong, Auteur Année de publication : 2020 Article en page(s) : pp 104 - 112 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] brûlis
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] incendie de forêt
[Termes descripteurs IGN] seuillage d'image
[Termes descripteurs IGN] signature spectraleRésumé : (auteur) Change detection from multi-temporal remote sensing images is an effective way to identify the burned areas after forest fires. However, the complex image scenario and the similar spectral signatures in multispectral bands may lead to many false positive errors, which make it difficult to exact the burned areas accurately. In this paper, a novel-burned area change detection approach is proposed. It is designed based on a new Normalized Burn Ratio-SWIR (NBRSWIR) index and an automatic thresholding algorithm. The effectiveness of the proposed approach is validated on three Landsat-8 data sets presenting various fire disaster events worldwide. Compared to eight index-based detection methods that developed in the literature, the proposed approach has the best performance in terms of class separability (2.49, 1.74 and 2.06) and accuracy (98.93%, 98.57% and 99.51%) in detecting the burned areas. Simultaneously, it can also better suppress the complex irrelevant changes in the background. Numéro de notice : A2020-167 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2020.1738900 date de publication en ligne : 16/03/2020 En ligne : https://doi.org/10.1080/22797254.2020.1738900 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94836
in European journal of remote sensing > vol 53 n° 1 (2020) . - pp 104 - 112[article]Residences information extraction from Landsat imagery using the multi-parameter decision tree method / Yujie Yang in Geocarto international, vol 34 n° 14 ([30/10/2019])
![]()
[article]
Titre : Residences information extraction from Landsat imagery using the multi-parameter decision tree method Type de document : Article/Communication Auteurs : Yujie Yang, Auteur ; Shijie Wang, Auteur ; Xiaoyong Bai, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 1621 - 1633 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] albedo
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] classification par arbre de décision
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] eau
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] ombre
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] seuillage d'imageRésumé : (auteur) The rapid and accurate grasp of changes in residences is crucial for urban planning and urbanisation. However, the traditional methods for extracting residences exists several problems, which lead to inaccurate extraction results. In this study, the Landsat image is used to establish a new method for extracting the residences quickly and accurately. The specific steps are as follows: (1) We calculate surface albedo to exclude the interference of waters and shadows; (2) Using single-band threshold method, we eliminate the interference of shadows; (3) Normalized Difference Vegetation Index is calculated to exclude the effects of vegetation; (4) Roads are removed by calculating the shape index. Verification shows that the accuracy of this extraction method is 92.81%, which is more accurate than the traditional methods and solves the problems existed in the traditional methods. This novel method is a new reference for other land cover research on the technical aspect. Numéro de notice : A2019-528 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1494760 date de publication en ligne : 07/09/2018 En ligne : https://doi.org/10.1080/10106049.2018.1494760 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94106
in Geocarto international > vol 34 n° 14 [30/10/2019] . - pp 1621 - 1633[article]Learning and adapting robust features for satellite image segmentation on heterogeneous data sets / Sina Ghassemi in IEEE Transactions on geoscience and remote sensing, vol 57 n° 9 (September 2019)
PermalinkUne nouvelle méthode de vectorisation du cadastre ancien / Antony Chalais in Géomatique expert, n° 129 (août - septembre 2019)
PermalinkClassification of glacial lakes using integrated approach of DFPS technique and gradient analysis using Sentinel 2A data / Prateek Verma in Geocarto international, vol 34 n° 10 ([15/07/2019])
PermalinkA novel algorithm for differentiating cloud from snow sheets using Landsat 8 OLI imagery / Tingting Wu in Advances in space research, vol 64 n°1 (1 July 2019)
PermalinkDenoising of natural images through robust wavelet thresholding and genetic programming / Asem Khmag in The Visual Computer, vol 33 n°9 (September 2017)
PermalinkChange detection of linear features in temporally spaced remotely sensed images using edge-based grid analysis / Arati Paul in Geocarto international, vol 32 n° 6 (June 2017)
PermalinkAutomatic parameter selection for intensity-based registration of imagery to LiDAR data / Ebadat Ghanbari Parmehr in IEEE Transactions on geoscience and remote sensing, vol 54 n° 12 (December 2016)
PermalinkMapping and characterization of hydrological dynamics in coastal marsh using high temporal resolution Sentinel-1 images / Cécile Cazals in Remote sensing, vol 8 n° 7 (July 2016)
![]()
PermalinkIdentification and utilization of land-use type importance for land-use data generalization / Wenxiu Gao in Cartographic journal (the), Vol 53 n° 1 (February 2016)
PermalinkSGM-based seamline determination for urban orthophoto mosaicking / Shiyan Pang in ISPRS Journal of photogrammetry and remote sensing, vol 112 (February 2016)
Permalink