Descripteur
Termes descripteurs IGN > mathématiques > statistique mathématique > probabilités > stochastique > estimation statistique > méthode du maximum de vraisemblance (estimation)
méthode du maximum de vraisemblance (estimation)Voir aussi |



Etendre la recherche sur niveau(x) vers le bas
An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
![]()
[article]
Titre : An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds Type de document : Article/Communication Auteurs : Fei Su, Auteur ; Haihong Zhu, Auteur ; Taoyi Chen, Auteur Année de publication : 2021 Article en page(s) : pp 114 - 131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] adjacence
[Termes descripteurs IGN] appariement de graphes
[Termes descripteurs IGN] arc
[Termes descripteurs IGN] bloc d'ancrage
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] jeu de données localisées
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] noeud
[Termes descripteurs IGN] objet 3D
[Termes descripteurs IGN] orientation
[Termes descripteurs IGN] positionnement en intérieur
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Most of the existing 3D indoor object classification methods have shown impressive achievements on the assumption that all objects are oriented in the upward direction with respect to the ground. To release this assumption, great effort has been made to handle arbitrarily oriented objects in terrestrial laser scanning (TLS) point clouds. As one of the most promising solutions, anchor-based graphs can be used to classify freely oriented objects. However, this approach suffers from missing anchor detection since valid detection relies heavily on the completeness of an anchor’s point clouds and is sensitive to missing data. This paper presents an anchor-based graph method to detect and classify arbitrarily oriented indoor objects. The anchors of each object are extracted by the structurally adjacent relationship among parts instead of the parts’ geometric metrics. In the case of adjacency, an anchor can be correctly extracted even with missing parts since the adjacency between an anchor and other parts is retained irrespective of the area extent of the considered parts. The best graph matching is achieved by finding the optimal corresponding node-pairs in a super-graph with fully connecting nodes based on maximum likelihood. The performances of the proposed method are evaluated with three indicators (object precision, object recall and object F1-score) in seven datasets. The experimental tests demonstrate the effectiveness of dealing with TLS point clouds, RGBD point clouds and Panorama RGBD point clouds, resulting in performance scores of approximately 0.8 for object precision and recall and over 0.9 for chair precision and table recall. Numéro de notice : A2021-087 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.007 date de publication en ligne : 29/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96852
in ISPRS Journal of photogrammetry and remote sensing > vol 172 (February 2021) . - pp 114 - 131[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 081-2021021 SL Revue Centre de documentation Revues en salle Disponible 081-2021022 DEP-RECF Revue Nancy Bibliothèque Nancy IFN Disponible Object-based classification of mixed forest types in Mongolia / E. Nyamjargal in Geocarto international, vol 35 n° 14 ([15/10/2020])
![]()
[article]
Titre : Object-based classification of mixed forest types in Mongolia Type de document : Article/Communication Auteurs : E. Nyamjargal, Auteur ; D. Amarsaikhan, Auteur ; A. Munkh-Erdene, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1615 - 1626 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] approche hiérarchique
[Termes descripteurs IGN] approche pixel
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] Mongolie
[Termes descripteurs IGN] peuplement mélangéRésumé : (auteur) The aim of this study is to produce updated forest map of the Bogdkhan Mountain, Mongolia using multitemporal Sentinel-2A images. The target area has highly mixed forest types and it is very difficult to differentiate the fuzzy boundaries among different forest types. To extract the forest class information, an object-based classification technique is applied and a rule-base to separate the mixed classes is developed. The rule-base uses a hierarchy of rules describing different conditions under which the actual classification has to be performed. To compare the result of the developed method with a result of a pixel-based approach, a Bayesian maximum likelihood classification is applied. The final result indicates overall accuracy of 90.87% for the object-based classification, while for the pixel-based approach it is 79.89%. Overall, the research indicates that the object-based method that uses a thoroughly defined segmentation and a well-constructed rule-base can significantly improve the classification of mixed forest types and produce of a reliable forest map. Numéro de notice : A2020-619 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1583775 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1583775 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95995
in Geocarto international > vol 35 n° 14 [15/10/2020] . - pp 1615 - 1626[article]Predictive land value modelling in Guatemala City using a geostatistical approach and Space Syntax / Jose Morales in International journal of geographical information science IJGIS, vol 34 n° 7 (July 2020)
![]()
[article]
Titre : Predictive land value modelling in Guatemala City using a geostatistical approach and Space Syntax Type de document : Article/Communication Auteurs : Jose Morales, Auteur ; Alfred Stein, Auteur ; Johannes Flacke, Auteur ; Jaap Zevenbergen, Auteur Année de publication : 2020 Article en page(s) : pp 1451 - 1474 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de la valeur
[Termes descripteurs IGN] analyse syntaxique
[Termes descripteurs IGN] cartographie statistique
[Termes descripteurs IGN] estimation quantitative
[Termes descripteurs IGN] évaluation foncière
[Termes descripteurs IGN] géostatistique
[Termes descripteurs IGN] Guatemala
[Termes descripteurs IGN] krigeage
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] modèle conceptuel de données localisées
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] système d'information foncièreRésumé : (auteur) Spatial information of land values is fundamental for planners and policy makers. Individual appraisals are costly, explaining the need for predictive modelling. Recent work has investigated using Space Syntax to analyse urban access and explain land values. However, the spatial dependence of urban land markets has not been addressed in such studies. Further, the selection of meaningful variables is commonly conducted under non-spatialized modelling conditions. The objective of this paper is to construct a land value map using a geostatistical approach using Space Syntax and a spatialized variable selection. The methodology is applied in Guatemala City. We used an existing dataset of residential land value appraisals and accessibility metrics. Regression-kriging was used to conduct variable selection and derive a model for spatial prediction. The prediction accuracy is compared with a multivariate regression. The results show that a spatialized variable selection yields a more parsimonious model with higher prediction accuracy. New insights were found on how Space Syntax explains land value variability when also modelling the spatial dependence. Space Syntax can contribute with relevant spatialized information for predictive land value modelling purposes. Finally, the spatial modelling framework facilitates the production of spatial information of land values that is relevant for planning practice. Numéro de notice : A2020-306 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1725014 date de publication en ligne : 11/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1725014 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95148
in International journal of geographical information science IJGIS > vol 34 n° 7 (July 2020) . - pp 1451 - 1474[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020071 SL Revue Centre de documentation Revues en salle Disponible Optimal lowest astronomical tide estimation using maximum likelihood estimator with multiple ocean models hybridization / Mohammed El-Diasty in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)
![]()
[article]
Titre : Optimal lowest astronomical tide estimation using maximum likelihood estimator with multiple ocean models hybridization Type de document : Article/Communication Auteurs : Mohammed El-Diasty, Auteur Année de publication : 2020 Article en page(s) : 11 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Océanographie
[Termes descripteurs IGN] carte marine
[Termes descripteurs IGN] données hydrographiques
[Termes descripteurs IGN] incertitude des données
[Termes descripteurs IGN] levé hydrographique
[Termes descripteurs IGN] marée océanique
[Termes descripteurs IGN] marégraphe
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] modèle océanographique
[Termes descripteurs IGN] navigation maritime
[Termes descripteurs IGN] niveau de la mer
[Termes descripteurs IGN] océanographie dynamique
[Termes descripteurs IGN] Rouge, merRésumé : (auteur) Developing an accurate Lowest Astronomical Tide (LAT) in a continuous form is essential for many maritime applications as it can be employed to develop an accurate continuous vertical control datum for hydrographic surveys applications and to produce accurate dynamic electronic navigation charts for safe maritime navigation by mariners. The LAT can be developed in a continuous (surface) using an estimated LAT surface model from the hydrodynamic ocean model along with coastal discrete LAT point values derived from tide gauges data sets to provide the corrected LAT surface model. In this paper, an accurate LAT surface model was developed for the Red Sea case study using a Maximum Likelihood Estimator (MLE) with multiple hydrodynamic ocean models hybridization, namely, WebTide, FES2014, DTU10, and EOT11a models. It was found that the developed optimal hybrid LAT model using MLE with multiple hydrodynamic ocean models hybridization ranges from 0.1 m to 1.63 m, associated with about 2.4 cm of uncertainty at a 95% confidence level in the Red Sea case study area. To validate the accuracy of the developed model, the comparison was made between the optimal hybrid LAT model developed from multiple hydrodynamic ocean models hybridization using the MLE method with the individual LAT models estimated from individual WebTide, FES2014, DTU10, or EOT11a ocean models based on the associated uncertainties estimated at a 95% confidence level. It was found that the optimal hybrid LAT model accuracy is superior to the individual LAT models estimated from individual ocean models with an improvement of about 50% in average, based on the estimated uncertainties. The importance of developing optimal LAT surface model using the MLE method with multiple hydrodynamic ocean models hybridization in this paper with few centimeters level of uncertainty can lead to accurate continuous vertical datum estimation that is essential for many maritime applications. Numéro de notice : A2020-301 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9050327 date de publication en ligne : 17/05/2020 En ligne : https://doi.org/10.3390/ijgi9050327 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95141
in ISPRS International journal of geo-information > vol 9 n° 5 (May 2020) . - 11 p.[article]Bayesian inversion of convolved hidden Markov models with applications in reservoir prediction / Torstein Fjeldstad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
![]()
[article]
Titre : Bayesian inversion of convolved hidden Markov models with applications in reservoir prediction Type de document : Article/Communication Auteurs : Torstein Fjeldstad, Auteur ; Henning Omre, Auteur Année de publication : 2020 Article en page(s) : pp 1957 - 1968 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] amplitude
[Termes descripteurs IGN] analyse mathématique
[Termes descripteurs IGN] approximation
[Termes descripteurs IGN] chaîne de Markov
[Termes descripteurs IGN] filtrage numérique d'image
[Termes descripteurs IGN] lithologie
[Termes descripteurs IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] modèle d'inversion
[Termes descripteurs IGN] modèle mathématique
[Termes descripteurs IGN] processus gaussien
[Termes descripteurs IGN] sismicitéRésumé : (Auteur) The efficient assessment of convolved hidden Markov models is discussed. The bottom layer is defined as an unobservable categorical first-order Markov chain, whereas the middle layer is assumed to be a Gaussian spatial variable conditional on the bottom layer. Hence, this layer appears marginally as a Gaussian mixture spatial variable. We observe the top layer as a convolution of the middle layer with Gaussian errors. The focus is on assessing the categorical and Gaussian mixture variables given the observations, and we operate in a Bayesian inversion framework. The model is defined to perform the inversion of subsurface seismic amplitude-versus-offset data into lithology/fluid classes and to assess the associated seismic material properties. Due to the spatial coupling in the likelihood functions, evaluation of the posterior normalizing constant is computationally demanding, and brute-force, single-site updating Markov chain Monte Carlo (MCMC) algorithms converge far too slowly to be useful. We construct two classes of approximate posterior models, which we assess analytically and efficiently using the recursive forward–backward algorithm. These approximate posterior densities are used as proposal densities in an independent proposal MCMC algorithm to determine the correct posterior model. A set of synthetic realistic examples is presented. The proposed approximations provide efficient proposal densities, which results in acceptance probabilities in the range 0.10–0.50 in the MCMC algorithm. A case study of lithology/fluid seismic inversion is presented. The lithology/fluid classes and the seismic material properties can be reliably predicted. Numéro de notice : A2020-093 Affiliation des auteurs : non IGN Thématique : IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2951205 date de publication en ligne : 26/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2951205 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94667
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1957 - 1968[article]PermalinkDevelopment of new homogenisation methods for GNSS atmospheric data. Application to the analysis of climate trends and variability / Annarosa Quarello (2020)
PermalinkDecomposition of geodetic time series: A combined simulated annealing algorithm and Kalman filter approach / Feng Ming in Advances in space research, vol 64 n°5 (1 September 2019)
PermalinkRobust M–M unscented Kalman filtering for GPS/IMU navigation / Cheng Yang in Journal of geodesy, vol 93 n° 8 (August 2019)
PermalinkApplication de la loi de Benford au contrôle de qualité des modèles numériques de terrain / Laurent Polidori in XYZ, n° 158 (mars 2019)
PermalinkA two-stage estimation method with bootstrap inference for semi-parametric geographically weighted generalized linear models / Dengkui Li in International journal of geographical information science IJGIS, vol 32 n° 9-10 (September - October 2018)
PermalinkAlgebraic method to speed up robust algorithms: example of laser-scanned point clouds / B. Palancz in Survey review, vol 49 n° 357 (December 2017)
PermalinkCharacterizing noise in daily GPS position time series with overlapping Hadamard variance and maximum likelihood estimation / Chang Xu in Survey review, vol 49 n° 355 (October 2017)
PermalinkGPS coordinate time series measurements in Ontario and Quebec, Canada / Hadis Samadi Alinia in Journal of geodesy, vol 91 n° 6 (June 2017)
PermalinkAn advanced GNSS code multipath detection and estimation algorithm / Negin Sokhandan in GPS solutions, vol 20 n° 4 (October 2016)
PermalinkPermalinkPermalinkOn estimation of the diagonal elements of a sparse precision matrix / Samuel Balmand in Electronic Journal of Statistics, vol 10 n° 1 (January 2016)
![]()
PermalinkVers la prise en compte de la dépendance spatio temporelle des séries de position GNSS dans leur analyse / Clément Benoist (2016)
PermalinkPermalinkPermalinkPermalinkEstimation et inférence du coefficient d'autorégression du modèle de Whittle sur un réseau d'interactions aléatoires faibles / D. Carillo in Revue internationale de géomatique, vol 17 n° 3-4 (septembre 2007 – février 2008)
PermalinkError analysis of weekly station coordinates in the DORIS network / Simon D.P. Williams in Journal of geodesy, vol 80 n° 8-11 (November 2006)
PermalinkEstimating the noise in space-geodetic positioning: the case of DORIS / Karine Le Bail in Journal of geodesy, vol 80 n° 8-11 (November 2006)
Permalink