Descripteur
Termes IGN > mathématiques > statistique mathématique > corrélation > coefficient de corrélation
coefficient de corrélation |
Documents disponibles dans cette catégorie (54)



Etendre la recherche sur niveau(x) vers le bas
GIS and machine learning for analysing influencing factors of bushfires using 40-year spatio-temporal bushfire data / Wanqin He in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)
![]()
[article]
Titre : GIS and machine learning for analysing influencing factors of bushfires using 40-year spatio-temporal bushfire data Type de document : Article/Communication Auteurs : Wanqin He, Auteur ; Sara Shirowzhan, Auteur ; Christopher Pettit, Auteur Année de publication : 2022 Article en page(s) : n° 336 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse diachronique
[Termes IGN] apprentissage automatique
[Termes IGN] brousse
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] coefficient de corrélation
[Termes IGN] données météorologiques
[Termes IGN] données spatiotemporelles
[Termes IGN] humidité du sol
[Termes IGN] incendie
[Termes IGN] indice de végétation
[Termes IGN] Nouvelle-Galles du Sud
[Termes IGN] prévention des risques
[Termes IGN] régression linéaire
[Termes IGN] Spark
[Termes IGN] système d'information géographique
[Termes IGN] température de l'airRésumé : (auteur) The causes of bushfires are extremely complex, and their scale of burning and probability of occurrence are influenced by the interaction of a variety of factors such as meteorological factors, topography, human activity and vegetation type. An in-depth understanding of the combined mechanisms of factors affecting the occurrence and spread of bushfires is needed to support the development of effective fire prevention plans and fire suppression measures and aid planning for geographic, ecological maintenance and urban emergency management. This study aimed to explore how bushfires, meteorological variability and other natural factors have interacted over the past 40 years in NSW Australia and how these influencing factors synergistically drive bushfires. The CSIRO’s Spark toolkit has been used to simulate bushfire burning spread over 24 h. The study uses NSW wildfire data from 1981–2020, combined with meteorological factors (temperature, precipitation, wind speed), vegetation data (NDVI data, vegetation type) and topography (slope, soil moisture) data to analyse the relationship between bushfires and influencing factors quantitatively. Machine learning-random forest regression was then used to determine the differences in the influence of bushfire factors on the incidence and burn scale of bushfires. Finally, the data on each influence factor was imported into Spark, and the results of the random forest model were used to set different influence weights in Spark to visualise the spread of bushfires burning over 24 h in four hotspot regions of bushfire in NSW. Wind speed, air temperature and soil moisture were found to have the most significant influence on the spread of bushfires, with the combined contribution of these three factors exceeding 60%, determining the spread of bushfires and the scale of burning. Precipitation and vegetation showed a greater influence on the annual frequency of bushfires. In addition, burn simulations show that wind direction influences the main direction of fire spread, whereas the shape of the flame front is mainly due to the influence of land classification. Besides, the simulation results from Spark could predict the temporal and spatial spread of fire, which is a potential decision aid for fireproofing agencies. The results of this study can inform how fire agencies can better understand fire occurrence mechanisms and use bushfire prediction and simulation techniques to support both their operational (short-term) and strategic (long-term) fire management responses and policies. Numéro de notice : A2022-481 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11060336 Date de publication en ligne : 05/06/2022 En ligne : https://doi.org/10.3390/ijgi11060336 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100894
in ISPRS International journal of geo-information > vol 11 n° 6 (June 2022) . - n° 336[article]Spatial modeling of migration using GIS-based multi-criteria decision analysis: A case study of Iran / Naeim Mijani in Transactions in GIS, vol 26 n° 2 (April 2022)
![]()
[article]
Titre : Spatial modeling of migration using GIS-based multi-criteria decision analysis: A case study of Iran Type de document : Article/Communication Auteurs : Naeim Mijani, Auteur ; Davoud Shahpari Sani, Auteur ; Mohsen Dastaran, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 645 - 668 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multicritère
[Termes IGN] approche hiérarchique
[Termes IGN] changement climatique
[Termes IGN] coefficient de corrélation
[Termes IGN] combinaison linéaire ponderée
[Termes IGN] données démographiques
[Termes IGN] données socio-économiques
[Termes IGN] Iran
[Termes IGN] migration humaine
[Termes IGN] modélisation spatiale
[Termes IGN] planification urbaine
[Termes IGN] système d'information géographiqueRésumé : (auteur) Spatial modeling of migration and the identification of the effective parameters are imperative for planning and managing demographic, economic, social, and environmental changes on various geographical scales. The recent climate change stressors as well as inequality in terms of education and life quality have triggered internal mass migrations in Iran, causing pressure on housing, the job market, and potential slums around large cities. This study proposes a new approach to modeling migration patterns in Iran based on multi-criteria decision analysis. For this purpose, a total of 23 individual criteria embedded within four criteria groups (economic, socio-cultural, welfare, and environmental) affecting national migration were used. The analytic hierarchy process was employed to determine weights for the input factors and the weighted linear combination (WLC) model was used for the integration of criteria, based on which maps of migration potential were produced. The model applied was evaluated based on the correlation coefficient between migration potential values obtained from the WLC model and the actual net migration rate. Among the input individual criteria, unemployment, higher education centers, number of physicians, and dust storms were found to influence national migration. Furthermore, our findings reveal that the potential for migration across Iranian provinces is heterogeneous, with the spatial potential for emigration being the highest and lowest in the border and central provinces, respectively. The correlation coefficient calculated between outputs from the WLC model and the net migration rate from 2011 to 2016, was .81, indicating the relatively high performance of the proposed model in producing a migration spatial potential map. Our proposed approach, along with the results achieved, can be useful to decision-makers and planners in designing data-driven policies against inequality- and climate-induced stressors. Numéro de notice : A2022-363 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12873 Date de publication en ligne : 23/11/2021 En ligne : https://doi.org/10.1111/tgis.12873 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100582
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 645 - 668[article]Multi-model estimation of forest canopy closure by using red edge bands based on Sentinel-2 images / Yiying Hua in Forests, vol 12 n° 12 (December 2021)
![]()
[article]
Titre : Multi-model estimation of forest canopy closure by using red edge bands based on Sentinel-2 images Type de document : Article/Communication Auteurs : Yiying Hua, Auteur ; Xuesheng Zhao, Auteur Année de publication : 2021 Article en page(s) : n° 1768 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] bande infrarouge
[Termes IGN] coefficient de corrélation
[Termes IGN] couvert forestier
[Termes IGN] détection de contours
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] modèle statistique
[Termes IGN] Mongolie intérieure (Chine)
[Termes IGN] régression
[Termes IGN] surveillance de la végétationRésumé : (auteur) In remote sensing, red edge bands are important indicators for monitoring vegetation growth. To examine the application potential of red edge bands in forest canopy closure estimation, three types of commonly used models—empirical statistical models (multiple stepwise regression (MSR)), machine learning models (back propagation neural network (BPNN)) and physical models (Li–Strahler geometric-optical (Li–Strahler GO) models)—were constructed and verified based on Sentinel-2 data, DEM data and measured data. In addition, we set up a comparative experiment without red edge bands. The relative error (ER) values of the BPNN model, MSR model, and Li–Strahler GO model with red edge bands were 16.97%, 20.76% and 24.83%, respectively. The validation accuracy measures of these models were higher than those of comparison models. For comparative experiments, the ER values of the MSR, Li–Strahler GO and BPNN models were increased by 13.07%, 4% and 1.22%, respectively. The experimental results demonstrate that red edge bands can effectively improve the accuracy of forest canopy closure estimation models to varying degrees. These findings provide a reference for modeling and estimating forest canopy closure using red edge bands based on Sentinel-2 images. Numéro de notice : A2021-125 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f12121768 Date de publication en ligne : 14/12/2021 En ligne : https://doi.org/10.3390/f12121768 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99318
in Forests > vol 12 n° 12 (December 2021) . - n° 1768[article]The spatiotemporal implications of urbanization for urban heat islands in Beijing: A predictive approach based on CA–Markov modeling (2004–2050) / Muhammad Amir Siddique in Remote sensing, vol 13 n° 22 (November-2 2021)
![]()
[article]
Titre : The spatiotemporal implications of urbanization for urban heat islands in Beijing: A predictive approach based on CA–Markov modeling (2004–2050) Type de document : Article/Communication Auteurs : Muhammad Amir Siddique, Auteur ; Yu Wang, Auteur ; Ninghan Xu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4697 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatio-temporelle
[Termes IGN] champ aléatoire de Markov
[Termes IGN] changement d'occupation du sol
[Termes IGN] changement d'utilisation du sol
[Termes IGN] classification et arbre de régression
[Termes IGN] coefficient de corrélation
[Termes IGN] écosystème urbain
[Termes IGN] flore urbaine
[Termes IGN] ilot thermique urbain
[Termes IGN] modèle de simulation
[Termes IGN] Pékin (Chine)
[Termes IGN] planification urbaine
[Termes IGN] série temporelle
[Termes IGN] température au sol
[Termes IGN] urbanisationRésumé : (auteur) The rapid increase in infrastructural development in populated areas has had numerous adverse impacts. The rise in land surface temperature (LST) and its associated damage to urban ecological systems result from urban development. Understanding the current and future LST phenomenon and its relationship to landscape composition and land use/cover (LUC) changes is critical to developing policies to mitigate the disastrous impacts of urban heat islands (UHIs) on urban ecosystems. Using remote sensing and GIS data, this study assessed the multi-scale relationship of LUCC and LST of the cosmopolitan exponentially growing area of Beijing, China. We investigated the impacts of LUC on LST in urban agglomeration for a time series (2004–2019) of Landsat data using Classification and Regression Trees (CART) and a single channel algorithm (SCA), respectively. We built a CA–Markov model to forecast future (2025 and 2050) LUCC and LST spatial patterns. Our results indicate that the cumulative changes in an urban area (UA) increased by about 908.15 km2 (5%), and 11% of vegetation area (VA) decreased from 2004 to 2019. The correlation coefficient of LUCC including vegetation, water bodies, and built-up areas with LST had values of r = −0.155 (p > 0.419), −0.809 (p = 0.000), and 0.526 (p = 0.003), respectively. The results surrounding future forecasts revealed an estimated 2309.55 km2 (14%) decrease in vegetation (urban and forest), while an expansion of 1194.78 km2 (8%) was predicted for a built-up area from 2019 to 2050. This decrease in vegetation cover and expansion of settlements would likely cause a rise of about ~5.74 °C to ~9.66 °C in temperature. These findings strongly support the hypothesis that LST is directly related to the vegetation index. In conclusion, the estimated overall increase of 7.5 °C in LST was predicted from 2019–2050, which is alarming for the urban community’s environmental health. The present results provide insight into sustainable environmental development through effective urban planning of Beijing and other urban hotspots. Numéro de notice : A2021-860 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13224697 Date de publication en ligne : 20/11/2021 En ligne : https://doi.org/10.3390/rs13224697 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99074
in Remote sensing > vol 13 n° 22 (November-2 2021) . - n° 4697[article]Semi-automatic extraction of rural roads under the constraint of combined geometric and texture features / Hai Tan in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
![]()
[article]
Titre : Semi-automatic extraction of rural roads under the constraint of combined geometric and texture features Type de document : Article/Communication Auteurs : Hai Tan, Auteur ; Zimo Shen, Auteur ; Jiguang Dai, Auteur Année de publication : 2021 Article en page(s) : pp 754 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] chemin rural
[Termes IGN] Chine
[Termes IGN] coefficient de corrélation
[Termes IGN] contrainte géométrique
[Termes IGN] corrélation croisée normalisée
[Termes IGN] courbure
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction semi-automatique
[Termes IGN] image à haute résolution
[Termes IGN] modèle de simulation
[Termes IGN] niveau de gris (image)
[Termes IGN] route
[Termes IGN] texture d'imageRésumé : (auteur) The extraction of road information from high-resolution remotely-sensed images has important application value in many fields. Rural roads have the characteristics of relatively narrow widths and diversified pavement materials; these characteristics can easily lead to problems involving the similarity of the road texture with the texture of surrounding objects and make it difficult to improve the automation of traditional high-precision road extraction methods. Based on this background, a semi-automatic rural road extraction method constrained by a combination of geometric and texture features is proposed in this paper. First, an adaptive road width extraction model is proposed to improve the accuracy of the initial road centre point. Then, aiming at the continuous change of curvature of rural roads, a tracking direction prediction model is proposed. Finally, a matching model under geometric texture constraints is proposed, which solves the problem of similarity between road and neighbourhood texture to a certain extent. The experimental results show that by selecting different types of experimental scenes or remotely sensed image data, compared with other methods, the proposed method can not only guarantee the road extraction accuracy but also improve the degree of automation to a certain extent. Numéro de notice : A2021-850 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10110754 Date de publication en ligne : 09/11/2021 En ligne : https://doi.org/10.3390/ijgi10110754 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99009
in ISPRS International journal of geo-information > vol 10 n° 11 (November 2021) . - pp 754[article]Using LiDAR and Random Forest to improve deer habitat models in a managed forest landscape / Colin S. Shanley in Forest ecology and management, vol 499 (1 November 2021)
PermalinkNon-tidal loading of the Baltic Sea in Latvian GNSS time series / Diana Haritonova in Journal of applied geodesy, vol 15 n° 4 (October 2021)
PermalinkSpatial biodiversity modeling using high-performance computing cluster: A case study to access biological richness in Indian landscape / Hariom Singh in Geocarto international, vol 36 n° 18 ([01/10/2021])
PermalinkAssessment and prediction of urban growth for a mega-city using CA-Markov model / Veerendra Yadav in Geocarto international, vol 36 n° 17 ([15/09/2021])
PermalinkEstimating regional soil moisture with synergistic use of AMSR2 and MODIS images / Majid Rahimzadegan in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 9 (September 2021)
PermalinkImplementing a mass valuation application on interoperable land valuation data model designed as an extension of the national GDI / Arif Cagdas Aydinoglu in Survey review, Vol 53 n° 379 (July 2021)
PermalinkOn the relationship between normalized difference vegetation index and land surface temperature: MODIS-based analysis in a semi-arid to arid environment / Salahuddin M. Jaber in Geocarto international, vol 36 n° 10 ([01/06/2021])
PermalinkPrecipitable water vapor fusion based on a generalized regression neural network / Bao Zhang in Journal of geodesy, vol 95 n° 4 (April 2021)
PermalinkOn the polarimetric variable improvement via alignment of subarray channels in PPAR using weather returns / Igor R. Ivić in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkIntercomparisons of precipitable water vapour derived from radiosonde, GPS and sunphotometer observations / Shaoqi Gong in Geodetski vestnik, vol 64 n° 4 (December 2020 - February 2021)
Permalink