Descripteur
Termes IGN > sciences humaines et sociales > vie des organisations > gestion des risques > prévention des risques > lutte contre l'incendie > incendie
incendieSynonyme(s)feuVoir aussi |
Documents disponibles dans cette catégorie (309)



Etendre la recherche sur niveau(x) vers le bas
Large-area high spatial resolution albedo retrievals from remote sensing for use in assessing the impact of wildfire soot deposition on high mountain snow and ice melt / André Bertoncini in Remote sensing of environment, vol 278 (September 2022)
![]()
[article]
Titre : Large-area high spatial resolution albedo retrievals from remote sensing for use in assessing the impact of wildfire soot deposition on high mountain snow and ice melt Type de document : Article/Communication Auteurs : André Bertoncini, Auteur ; Caroline Aubry-Wake, Auteur ; John W. Pomeroy, Auteur Année de publication : 2022 Article en page(s) : n° 113101 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] albedo
[Termes IGN] Colombie-Britannique (Canada)
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] fonte des glaces
[Termes IGN] glacier
[Termes IGN] Google Earth Engine
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SRTM
[Termes IGN] image Terra-MODIS
[Termes IGN] incendie de forêt
[Termes IGN] montagne
[Termes IGN] neige
[Termes IGN] pouvoir de résolution radiométriqueRésumé : (auteur) Soot deposition from wildfires decreases snow and ice albedo and increases the absorption of shortwave radiation, which advances and accelerates melt. Soot deposition also induces algal growth, which further decreases snow and ice albedo. In recent years, increasingly severe and widespread wildfire activity has occurred in western Canada in association with climate change. In the summers of 2017 and 2018, westerly winds transported smoke from extensive record-breaking wildfires in British Columbia eastward to the Canadian Rockies, where substantial amounts of soot were deposited on high mountain glaciers, snowfields, and icefields. Several studies have addressed the problem of soot deposition on snow and ice, but the spatiotemporal resolution applied has not been compatible with studying mountain icefields that are extensive but contain substantial internal variability and have dynamical albedos. This study evaluates spatial patterns in the albedo decrease and net shortwave radiation (K*) increase caused by soot from intense wildfires in Western Canada deposited on the Columbia Icefield (151 km2), Canadian Rockies, during 2017 and 2018. Twelve Sentinel-2 images were used to generate high spatial resolution albedo retrievals during four summers (2017 to 2020) using a MODIS bidirectional reflectance distribution function (BRDF) model, which was employed to model the snow and ice reflectance anisotropy. Remote sensing estimates were evaluated using site-measured albedo on the icefield's Athabasca Glacier tongue, resulting in a R2, mean bias, and root mean square error (RMSE) of 0.68, 0.019, and 0.026, respectively. The biggest inter-annual spatially averaged soot-induced albedo declines were of 0.148 and 0.050 (2018 to 2020) for southeast-facing glaciers and the snow plateau, respectively. The highest inter-annual spatially-averaged soot-induced shortwave radiative forcing was 203 W/m2 for southeast-facing glaciers (2018 to 2020) and 106 W/m2 for the snow plateau (2017 to 2020). These findings indicate that snow albedo responded rapidly to and recovered rapidly from soot deposition. However, ice albedo remained low the year after fire, and this was likely related to a bio-albedo feedback involving microorganisms. Snow and ice K* were highest during low albedo years, especially for south-facing glaciers. These large-scale effects accelerated melt of the Columbia Icefield. The findings highlight the importance of using large-area high spatial resolution albedo estimates to analyze the effect of wildfire soot deposition on snow and ice albedo and K* on icefields, which is not possible using other approaches. Numéro de notice : A2022-466 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113101 Date de publication en ligne : 30/05/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113101 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100800
in Remote sensing of environment > vol 278 (September 2022) . - n° 113101[article]GIS and machine learning for analysing influencing factors of bushfires using 40-year spatio-temporal bushfire data / Wanqin He in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)
![]()
[article]
Titre : GIS and machine learning for analysing influencing factors of bushfires using 40-year spatio-temporal bushfire data Type de document : Article/Communication Auteurs : Wanqin He, Auteur ; Sara Shirowzhan, Auteur ; Christopher Pettit, Auteur Année de publication : 2022 Article en page(s) : n° 336 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse diachronique
[Termes IGN] apprentissage automatique
[Termes IGN] brousse
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] coefficient de corrélation
[Termes IGN] données météorologiques
[Termes IGN] données spatiotemporelles
[Termes IGN] humidité du sol
[Termes IGN] incendie
[Termes IGN] indice de végétation
[Termes IGN] Nouvelle-Galles du Sud
[Termes IGN] prévention des risques
[Termes IGN] régression linéaire
[Termes IGN] Spark
[Termes IGN] système d'information géographique
[Termes IGN] température de l'airRésumé : (auteur) The causes of bushfires are extremely complex, and their scale of burning and probability of occurrence are influenced by the interaction of a variety of factors such as meteorological factors, topography, human activity and vegetation type. An in-depth understanding of the combined mechanisms of factors affecting the occurrence and spread of bushfires is needed to support the development of effective fire prevention plans and fire suppression measures and aid planning for geographic, ecological maintenance and urban emergency management. This study aimed to explore how bushfires, meteorological variability and other natural factors have interacted over the past 40 years in NSW Australia and how these influencing factors synergistically drive bushfires. The CSIRO’s Spark toolkit has been used to simulate bushfire burning spread over 24 h. The study uses NSW wildfire data from 1981–2020, combined with meteorological factors (temperature, precipitation, wind speed), vegetation data (NDVI data, vegetation type) and topography (slope, soil moisture) data to analyse the relationship between bushfires and influencing factors quantitatively. Machine learning-random forest regression was then used to determine the differences in the influence of bushfire factors on the incidence and burn scale of bushfires. Finally, the data on each influence factor was imported into Spark, and the results of the random forest model were used to set different influence weights in Spark to visualise the spread of bushfires burning over 24 h in four hotspot regions of bushfire in NSW. Wind speed, air temperature and soil moisture were found to have the most significant influence on the spread of bushfires, with the combined contribution of these three factors exceeding 60%, determining the spread of bushfires and the scale of burning. Precipitation and vegetation showed a greater influence on the annual frequency of bushfires. In addition, burn simulations show that wind direction influences the main direction of fire spread, whereas the shape of the flame front is mainly due to the influence of land classification. Besides, the simulation results from Spark could predict the temporal and spatial spread of fire, which is a potential decision aid for fireproofing agencies. The results of this study can inform how fire agencies can better understand fire occurrence mechanisms and use bushfire prediction and simulation techniques to support both their operational (short-term) and strategic (long-term) fire management responses and policies. Numéro de notice : A2022-481 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11060336 Date de publication en ligne : 05/06/2022 En ligne : https://doi.org/10.3390/ijgi11060336 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100894
in ISPRS International journal of geo-information > vol 11 n° 6 (June 2022) . - n° 336[article]Analyzing spatio-temporal pattern of the forest fire burnt area in Uttarakhand using Sentinel-2 data / Shailja Mamgain in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
![]()
[article]
Titre : Analyzing spatio-temporal pattern of the forest fire burnt area in Uttarakhand using Sentinel-2 data Type de document : Article/Communication Auteurs : Shailja Mamgain, Auteur ; Harish Chandra Karnatak, Auteur ; Arijit Roy, Auteur ; Prakash Chauhan, Auteur Année de publication : 2022 Article en page(s) : pp 533 - 539 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] image Sentinel-MSI
[Termes IGN] incendie de forêt
[Termes IGN] indice de végétation
[Termes IGN] régression multiple
[Termes IGN] Uttarakhand (Inde ; état)
[Termes IGN] zone sinistréeRésumé : (auteur) Forest fire burnt area estimation using Normalized Burn Ratio at regional level helps in understanding the pattern of the frequency and severity of forest fires. In this study, burnt area is estimated for all the thirteen districts of Indian state Uttarakhand for last six years from 2016 to 2021 using Sentinel 2A and 2B datasets. The spatial and temporal pattern of the burnt area was analyzed by incorporating different parameters such as meteorological parameters like land surface temperature, rainfall; edaphic parameter like surface soil moisture and vegetation parameters like Normalized Difference Vegetation Index & Enhanced Vegetation Index. The estimated burnt area was statistically analyzed with respect to the parameters stated and the relationship among them was quantified. It was found that burnt area is positively correlated with the land surface temperature, while it showed negative correlation with the pre-fire precipitation, pre-fire NDVI & EVI and the surface soil moisture for 11 out of 13 districts. The district-wise forest fire burnt area assessment and analysis of its spatio-temporal pattern can be used in the preparedness and mitigation planning to prevent drastic ecological impacts of forest fires on the landscape. Numéro de notice : A2022-443 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.5194/isprs-annals-V-3-2022-533-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-3-2022-533-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100778
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-3-2022 (2022 edition) . - pp 533 - 539[article]A voxel-based method for the three-dimensional modelling of heathland from lidar point clouds: first results / N. Homainejad in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
![]()
[article]
Titre : A voxel-based method for the three-dimensional modelling of heathland from lidar point clouds: first results Type de document : Article/Communication Auteurs : N. Homainejad, Auteur ; Sisi Zlatanova, Auteur ; Norbert Pfeifer, Auteur Année de publication : 2022 Article en page(s) : pp 697 - 704 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] classification par nuées dynamiques
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] incendie de forêt
[Termes IGN] lande
[Termes IGN] modélisation 3D
[Termes IGN] Nouvelle-Galles du Sud
[Termes IGN] segmentation en régions
[Termes IGN] semis de points
[Termes IGN] voxelRésumé : (auteur) Bushfires are an intrinsic part of the New South Wales’ (NSW) environment in Australia, especially in the Blue Mountains region (11400km2), that is dominated by fire prone vegetation that includes heathland. Many of the Australian native plants in this region are fire-prone and combustible, and many species even require fire to regenerate. The classification of the lateral and vertical distribution of living vegetation is necessary to manage the complexity of bushfires. Currently, interpretation of aerial and satellite images is the prevalent method for the classification of vegetation in NSW. The result does not represent important vegetation structural attributes, such as vegetation height, subcanopy height, and destiny. This paper presents an automated method for the three-dimensional modelling of heathland and important heathland parameters, such as heath shrub height and continuity, and sparse tree and mallee height and density in support of bushfire behaviour modelling. For this study airborne lidar point clouds with a density of 120 points per square meter are used. For the processing and modelling the study is divided into a point cloud processing phase and a voxel-based modelling phase. The point cloud processing phase consists of the normalisation of the height and extraction of the above ground vegetation, while the voxel phase consists of seeded region growing for segmentation, and K-means clustering for the classification of the vegetation into three different canopy layers: a) heath shrubs, b) sparse trees and mallee, c) tall trees. Numéro de notice : A2022-436 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.5194/isprs-annals-V-3-2022-697-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-3-2022-697-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100783
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-3-2022 (2022 edition) . - pp 697 - 704[article]A national fuel type mapping method improvement using sentinel-2 satellite data / Alexandra Stefanidou in Geocarto international, vol 37 n° 4 (April 2022)
![]()
[article]
Titre : A national fuel type mapping method improvement using sentinel-2 satellite data Type de document : Article/Communication Auteurs : Alexandra Stefanidou, Auteur ; Ioannis Z. Gitas, Auteur ; Thomas Katagis, Auteur Année de publication : 2022 Article en page(s) : pp 1022 - 1042 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte de la végétation
[Termes IGN] carte thématique
[Termes IGN] combustible
[Termes IGN] distribution spatiale
[Termes IGN] Grèce
[Termes IGN] image Sentinel-MSI
[Termes IGN] incendie de forêt
[Termes IGN] prévention des risquesRésumé : (auteur) Despite the fact that wildland fires have always been an integral part of many ecosystems, their increased frequency and intensity have reinforced the need of fire managers for updated and highly accurate information associated with the spatial distribution of forest fuels. In 2015, a fuel type mapping method was developed in the framework of the “National Observatory of Forest Fires (NOFFi)” project resulting in the generation of a national fuel type map. In this study, we aimed at examining the potential of the newly available Sentinel-2 satellite images for the improvement of the NOFFi’s mapping method in terms of accuracy and update effectiveness of the national fuel type map. Results demonstrate Sentinel-2 data will likely improve the resolution and reliability of national fuel type maps, increasing mapping efficiency for operational purposes. Numéro de notice : A2022-393 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2020.1756460 Date de publication en ligne : 28/04/2020 En ligne : https://doi.org/10.1080/10106049.2020.1756460 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100687
in Geocarto international > vol 37 n° 4 (April 2022) . - pp 1022 - 1042[article]Natural disturbances risks in European boreal and temperate forests and their links to climate change : A review of modelling approaches / Joyce Machado Nunes Romeiro in Forest ecology and management, vol 509 (1 April 2022)
PermalinkSimulating fire-safe cities using a machine learning-based algorithm for the complex urban forms of developing nations: a case of Mumbai India / Vaibhav Kumar in Geocarto international, vol 37 n° 4 (April 2022)
PermalinkScorch height and volume modeling in prescribed fires: Effects of canopy gaps in Pinus pinaster stands in Southern Europe / J.R. Molina in Forest ecology and management, vol 506 (15 February 2022)
PermalinkMapping burn severity in the western Italian Alps through phenologically coherent reflectance composites derived from Sentinel-2 imagery / Donato Morresi in Remote sensing of environment, vol 269 (February 2022)
PermalinkClassification of mediterranean shrub species from UAV point clouds / Juan Pedro Carbonell-Rivera in Remote sensing, vol 14 n° 1 (January-1 2022)
PermalinkForest fire susceptibility assessment using google earth engine in Gangwon-do, Republic of Korea / Yong Piao in Geomatics, Natural Hazards and Risk, vol 13 n° 1 (2022)
PermalinkMonitoring forest-savanna dynamics in the Guineo-Congolian transition area of the centre region of Cameroon / Le Bienfaiteur Sagang Takougoum (2022)
PermalinkA GIS-remote sensing approach for forest fire risk assessment: case of Bizerte region, Tunisia / Salwa Saidi in Applied geomatics, vol 13 n° 4 (December 2021)
PermalinkPrescribed burning as a cost-effective way to address climate change and forest management in Mediterranean countries / Renata Martins Pacheco in Annals of Forest Science [en ligne], vol 78 n° 4 (December 2021)
PermalinkDeep-learning-based burned area mapping using the synergy of Sentinel-1&2 data / Qi Zhang in Remote sensing of environment, vol 264 (October 2021)
Permalink