Descripteur
Termes IGN > cartographie > conception cartographique > généralisation cartographique
généralisation cartographiqueVoir aussi |
Documents disponibles dans cette catégorie (328)



Etendre la recherche sur niveau(x) vers le bas
Is the radial distance really a distance? An analysis of its properties and interest for the matching of polygon features / Yann Méneroux in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
![]()
[article]
Titre : Is the radial distance really a distance? An analysis of its properties and interest for the matching of polygon features Type de document : Article/Communication Auteurs : Yann Méneroux , Auteur ; Ibrahim Maidaneh Abdi, Auteur ; Arnaud Le Guilcher
, Auteur ; Ana-Maria Olteanu-Raimond
, Auteur
Année de publication : 2023 Projets : 3-projet - voir note / Article en page(s) : 38 p. Note générale : bibliographie
This work was supported by the French National Mapping Agency: Institut National de l’Information Géographique et Forestière (IGN) and by the University of DjiboutiLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] abaque
[Termes IGN] algorithme de Douglas-Peucker
[Termes IGN] appariement de formes
[Termes IGN] bâtiment
[Termes IGN] BD Topo
[Termes IGN] distance
[Termes IGN] généralisation
[Termes IGN] géométrie analytique
[Termes IGN] modèle analytique
[Termes IGN] polygone
[Termes IGN] propagation d'erreur
[Termes IGN] transformation rapide de FourierRésumé : (auteur) In this paper, we examine the properties of the radial distance which has been used as a tool to compare the shape of simple surfacic objects. We give a rigorous definition of the radial distance and derive its theoretical properties, and in particular under which conditions it satisfies the distance properties. We show how the computation of the radial distance can be implemented in practice and made faster by the use of an analytical formula and a Fast Fourier Transform. Finally, we conduct experiments to measure how the radial distance is impacted by perturbation and generalization and we give abacuses and thresholds to deduce when buildings are likely to be homologous or non-homologous given their radial distance. Numéro de notice : A2023-074 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2123487 Date de publication en ligne : 23/09/2022 En ligne : https://doi.org/10.1080/13658816.2022.2123487 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101671
in International journal of geographical information science IJGIS > vol 37 n° 2 (February 2023) . - 38 p.[article]Evaluation of automatic prediction of small horizontal curve attributes of mountain roads in GIS environments / Sercan Gülci in ISPRS International journal of geo-information, vol 11 n° 11 (November 2022)
![]()
[article]
Titre : Evaluation of automatic prediction of small horizontal curve attributes of mountain roads in GIS environments Type de document : Article/Communication Auteurs : Sercan Gülci, Auteur ; Afiz Hulusi Acar, Auteur ; Abdullah E. Akay, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 560 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] algorithme de Douglas-Peucker
[Termes IGN] attribut géomètrique
[Termes IGN] coefficient de corrélation
[Termes IGN] courbe
[Termes IGN] matrice de confusion
[Termes IGN] montagne
[Termes IGN] réseau routier
[Termes IGN] système d'information géographique
[Termes IGN] tracé routier
[Termes IGN] Turquie
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Road curve attributes can be determined by using Geographic Information System (GIS) to be used in road vehicle traffic safety and planning studies. This study involves analyzing the GIS-based estimation accuracy in the length, radius and the number of small horizontal road curves on a two-lane rural road and a forest road. The prediction success of horizontal curve attributes was investigated using digitized raw and generalized/simplified road segments. Two different roads were examined, involving 20 test groups and two control groups, using 22 datasets obtained from digitized and surveyed roads based on satellite imagery, GIS estimates, and field measurements. Confusion matrix tables were also used to evaluate the prediction accuracy of horizontal curve geometry. F-score, Mathews Correlation Coefficient, Bookmaker Informedness and Balanced Accuracy were used to investigate the performance of test groups. The Kruskal–Wallis test was used to analyze the statistical relationships between the data. Compared to the Bezier generalization algorithm, the Douglas–Peucker algorithm showed the most accurate horizontal curve predictions at generalization tolerances of 0.8 m and 1 m. The results show that the generalization tolerance level contributes to the prediction accuracy of the number, curve radius, and length of the horizontal curves, which vary with the tolerance value. Thus, this study underlined the importance of calculating generalizations and tolerances following a manual road digitization. Numéro de notice : A2022-847 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11110560 Date de publication en ligne : 09/11/2022 En ligne : https://doi.org/10.3390/ijgi11110560 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102083
in ISPRS International journal of geo-information > vol 11 n° 11 (November 2022) . - n° 560[article]Polyline simplification based on the artificial neural network with constraints of generalization knowledge / Jiawei Du in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)
![]()
[article]
Titre : Polyline simplification based on the artificial neural network with constraints of generalization knowledge Type de document : Article/Communication Auteurs : Jiawei Du, Auteur ; Jichong Yin, Auteur ; Chengyi Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 313 - 337 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] descripteur
[Termes IGN] données maillées
[Termes IGN] données vectorielles
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] polyligne
[Termes IGN] programmation par contraintes
[Termes IGN] réseau neuronal artificiel
[Termes IGN] simplification de contour
[Vedettes matières IGN] GénéralisationRésumé : (auteur) The present paper presents techniques for polyline simplification based on an artificial neural network within the constraints of generalization knowledge. The proposed method measures polyline shape characteristics that influence polyline simplification using abstracted descriptors and then introduces these descriptors into the artificial neural network as input properties. In total, 18 descriptors categorized into three types are presented in detail. In a second approach, map simplification principles are abstracted as controllers, imposed after the output layer of the trained artificial neural network to make the polyline simplification comply with these principles. This study worked with three controllers – a basic controller and two knowledge-based controllers. These descriptors and controllers abstracted from generalization knowledge were tested in experiments to determine their efficacy in polyline simplification based on the artificial neural network. The experimental results show that the utilization of abstracted descriptors and controllers can constrain the artificial neural network-based polyline simplification according to polyline shape characteristics and simplification principles. Numéro de notice : A2022-479 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : https://doi.org/10.1080/15230406.2021.2013944 Date de publication en ligne : 17/01/2022 En ligne : https://doi.org/10.1080/15230406.2021.2013944 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100885
in Cartography and Geographic Information Science > Vol 49 n° 4 (July 2022) . - pp 313 - 337[article]A dual-generator translation network fusing texture and structure features for SAR and optical image matching / Han Nie in Remote sensing, Vol 14 n° 12 (June-2 2022)
![]()
[article]
Titre : A dual-generator translation network fusing texture and structure features for SAR and optical image matching Type de document : Article/Communication Auteurs : Han Nie, Auteur ; Zhitao Fu, Auteur ; Bo-Hui Tang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2946 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] agrégation de détails
[Termes IGN] appariement d'images
[Termes IGN] fusion d'images
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] rapport signal sur bruit
[Termes IGN] rift
[Termes IGN] texture d'imageRésumé : (auteur) The matching problem for heterologous remote sensing images can be simplified to the matching problem for pseudo homologous remote sensing images via image translation to improve the matching performance. Among such applications, the translation of synthetic aperture radar (SAR) and optical images is the current focus of research. However, the existing methods for SAR-to-optical translation have two main drawbacks. First, single generators usually sacrifice either structure or texture features to balance the model performance and complexity, which often results in textural or structural distortion; second, due to large nonlinear radiation distortions (NRDs) in SAR images, there are still visual differences between the pseudo-optical images generated by current generative adversarial networks (GANs) and real optical images. Therefore, we propose a dual-generator translation network for fusing structure and texture features. On the one hand, the proposed network has dual generators, a texture generator, and a structure generator, with good cross-coupling to obtain high-accuracy structure and texture features; on the other hand, frequency-domain and spatial-domain loss functions are introduced to reduce the differences between pseudo-optical images and real optical images. Extensive quantitative and qualitative experiments show that our method achieves state-of-the-art performance on publicly available optical and SAR datasets. Our method improves the peak signal-to-noise ratio (PSNR) by 21.0%, the chromatic feature similarity (FSIMc) by 6.9%, and the structural similarity (SSIM) by 161.7% in terms of the average metric values on all test images compared with the next best results. In addition, we present a before-and-after translation comparison experiment to show that our method improves the average keypoint repeatability by approximately 111.7% and the matching accuracy by approximately 5.25%. Numéro de notice : A2022-562 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14122946 Date de publication en ligne : 20/06/2022 En ligne : https://doi.org/10.3390/rs14122946 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101237
in Remote sensing > Vol 14 n° 12 (June-2 2022) . - n° 2946[article]Context-aware network for semantic segmentation toward large-scale point clouds in urban environments / Chun Liu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)
![]()
[article]
Titre : Context-aware network for semantic segmentation toward large-scale point clouds in urban environments Type de document : Article/Communication Auteurs : Chun Liu, Auteur ; Doudou Zeng, Auteur ; Akram Akbar, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5703915 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] agrégation de détails
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] graphe
[Termes IGN] prise en compte du contexte
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] zone urbaineRésumé : (auteur) Point cloud semantic segmentation in urban scenes plays a vital role in intelligent city modeling, autonomous driving, and urban planning. Point cloud semantic segmentation based on deep learning methods has achieved significant improvement. However, it is also challenging for accurate semantic segmentation in large scenes due to complex elements, variety of scene classes, occlusions, and noise. Besides, most methods need to split the original point cloud into multiple blocks before processing and cannot directly deal with the point clouds on a large scale. We propose a novel context-aware network (CAN) that can directly deal with large-scale point clouds. In the proposed network, a local feature aggregation module (LFAM) is designed to preserve rich geometric details in the raw point cloud and reduce the information loss during feature extraction. Then, in combination with a global context aggregation module (GCAM), capture long-range dependencies to enhance the network feature representation and suppress the noise. Finally, a context-aware upsampling module (CAUM) is embedded into the proposed network to capture the global perception from a broad perspective. The ensemble of low-level and high-level features facilitates the effectiveness and efficiency of 3-D point cloud feature refinement. Comprehensive experiments were carried out on three large-scale point cloud datasets in both outdoor and indoor environments to evaluate the performance of the proposed network. The results show that the proposed method outperformed the state-of-the-art representative semantic segmentation networks, and the overall accuracy (OA) of Tongji-3D, Semantic3D, and Stanford large-scale 3-D indoor spaces (S3DIS) is 96.01%, 95.0%, and 88.55%, respectively. Numéro de notice : A2022-561 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3182776 Date de publication en ligne : 13/06/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3182776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101188
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 6 (June 2022) . - n° 5703915[article]VD-LAB: A view-decoupled network with local-global aggregation bridge for airborne laser scanning point cloud classification / Jihao Li in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)
PermalinkPermalinkA semantics-based trajectory segmentation simplification method / Minshi Liu in Journal of Geovisualization and Spatial Analysis, vol 5 n° 2 (December 2021)
PermalinkAutomatic building detection with polygonizing and attribute extraction from high-resolution images / Samitha Daranagama in ISPRS International journal of geo-information, vol 10 n° 9 (September 2021)
PermalinkA typification method for linear building groups based on stroke simplification / Xiao Wang in Geocarto international, vol 36 n° 15 ([15/08/2021])
PermalinkPermalinkImage matching from handcrafted to deep features: A survey / Jiayi Ma in International journal of computer vision, vol 29 n° 1 (January 2021)
PermalinkA multi-scale representation model of polyline based on head/tail breaks / Pengcheng Liu in International journal of geographical information science IJGIS, vol 34 n° 11 (November 2020)
PermalinkRoad network simplification for location-based services / Abdeltawab M. Hendawi in Geoinformatica, vol 24 n° 4 (October 2020)
PermalinkRegression modeling of reduction in spatial accuracy and detail for multiple geometric line simplification procedures / Timofey Samsonov in International journal of cartography, Vol 6 n° 1 (March 2020)
Permalink