Descripteur
Termes descripteurs IGN > mathématiques > analyse mathématique > topologie > théorie des graphes
théorie des graphes |


Etendre la recherche sur niveau(x) vers le bas
A new small area estimation algorithm to balance between statistical precision and scale / Cédric Vega in International journal of applied Earth observation and geoinformation, vol 97 (May 2021)
![]()
[article]
Titre : A new small area estimation algorithm to balance between statistical precision and scale Type de document : Article/Communication Auteurs : Cédric Vega , Auteur ; Jean-Pierre Renaud, Auteur ; Ankit Sagar
, Auteur ; Olivier Bouriaud
, Auteur
Année de publication : 2021 Projets : LUE / , DIABOLO / Packalen, Tuula, ARBRE/CHM-era / Jolly, Anne Article en page(s) : n° 102303 Note générale : bibliographie
This research was funded by The French Environmental Management Agency (ADEME), grant number 16-60-C0007. The methods and algorithms for processing photogrammetric data were supported by DIABOLO project from the European Union’s Horizon 2020 research and innovation program under grant agreement No 633464, as well as CHM-ERA project from the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE). Ankit Sagar received the financial support of the French PIA project “Lorraine Université d’Excellence”, reference ANR-15-IDEX-04-LUE, through the project Impact DeepSurf.Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] arbre BSP
[Termes descripteurs IGN] capital sur pied
[Termes descripteurs IGN] données auxiliaires
[Termes descripteurs IGN] données de terrain
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] inventaire forestier national (données France)
[Termes descripteurs IGN] réduction d'échelle
[Termes descripteurs IGN] seuillage
[Termes descripteurs IGN] surface terrière
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Combining national forest inventory (NFI) data with auxiliary information allows downscaling and improving the precision of NFI estimates for small domains, where normally too few field plots are available to produce reliable estimates. In most situations, small domains represent administrative units that could greatly vary in size and forested area. In small and poorly sampled domains, the precision of estimates often drop below expected standards.
To tackle this issue, we introduce a downscaling algorithm generating the smallest possible groups of domains satisfying prescribed sampling density and estimation error. The binary space partitioning algorithm recursively divides the population of domains in two groups while the prescribed precision conditions are fulfilled.
The algorithm was tested on two major forest attributes (i.e. growing stock and basal area) in an area of 7,500 km2 dominated by hardwood forests in the centre of France. The estimation domains consisted in 157 municipalities. The field data included 819 NFI plots surveyed during a 5 years period. The auxiliary data consisted in 48 metrics derived from a forest map, photogrammetric models and Landsat images. A model-assisted framework was used for estimation. For each forest attribute, the best model was selected using a best-subset approach using a Bayesian Information Criteria. The retained models explained 58% and 41% of the observed variance for the growing stocks and basal areas respectively. The performance of the algorithm was evaluated using a minimum of 3 NFI points per domain and estimation errors varying from 10 to 50%.
For a target estimation error set to 10%, the algorithm led to a limited number of estimation domains ( The algorithm provides a flexible estimation framework for small area estimation. The key advantages of the approach are relying on its capacity to produce estimations based on a preselected precision threshold and to produce results over the whole area of interest, avoiding areas without any estimates. The algorithm could also be used on any kind of polygon layers (not only administrative ones), provided that the field sampling design enable estimation. This makes the proposed algorithm a convenient tool notably for decision makers and forest managers.Numéro de notice : A2021-067 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2021.102303 date de publication en ligne : 25/01/2021 En ligne : https://doi.org/10.1016/j.jag.2021.102303 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96992
in International journal of applied Earth observation and geoinformation > vol 97 (May 2021) . - n° 102303[article]Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps / Xiongfeng Yan in International journal of geographical information science IJGIS, vol 35 n° 3 (March 2021)
![]()
[article]
Titre : Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps Type de document : Article/Communication Auteurs : Xiongfeng Yan, Auteur ; Tinghua Ai, Auteur ; Min Yang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 490 - 512 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage non-dirigé
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] codage
[Termes descripteurs IGN] données vectorielles
[Termes descripteurs IGN] graphe
[Termes descripteurs IGN] mesure géométrique
[Termes descripteurs IGN] modélisation du bâti
[Termes descripteurs IGN] représentation cognitive
[Termes descripteurs IGN] représentation spatialeRésumé : (auteur) The shape of a geospatial object is an important characteristic and a significant factor in spatial cognition. Existing shape representation methods for vector-structured objects in the map space are mainly based on geometric and statistical measures. Considering that shape is complicated and cognitively related, this study develops a learning strategy to combine multiple features extracted from its boundary and obtain a reasonable shape representation. Taking building data as example, this study first models the shape of a building using a graph structure and extracts multiple features for each vertex based on the local and regional structures. A graph convolutional autoencoder (GCAE) model comprising graph convolution and autoencoder architecture is proposed to analyze the modeled graph and realize shape coding through unsupervised learning. Experiments show that the GCAE model can produce a cognitively compliant shape coding, with the ability to distinguish different shapes. It outperforms existing methods in terms of similarity measurements. Furthermore, the shape coding is experimentally proven to be effective in representing the local and global characteristics of building shape in application scenarios such as shape retrieval and matching. Numéro de notice : A2021-166 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1768260 date de publication en ligne : 25/05/2020 En ligne : https://doi.org/10.1080/13658816.2020.1768260 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97100
in International journal of geographical information science IJGIS > vol 35 n° 3 (March 2021) . - pp 490 - 512[article]An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds Type de document : Article/Communication Auteurs : Fei Su, Auteur ; Haihong Zhu, Auteur ; Taoyi Chen, Auteur Année de publication : 2021 Article en page(s) : pp 114 - 131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] adjacence
[Termes descripteurs IGN] appariement de graphes
[Termes descripteurs IGN] arc
[Termes descripteurs IGN] bloc d'ancrage
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] jeu de données localisées
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] noeud
[Termes descripteurs IGN] objet 3D
[Termes descripteurs IGN] orientation
[Termes descripteurs IGN] positionnement en intérieur
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Most of the existing 3D indoor object classification methods have shown impressive achievements on the assumption that all objects are oriented in the upward direction with respect to the ground. To release this assumption, great effort has been made to handle arbitrarily oriented objects in terrestrial laser scanning (TLS) point clouds. As one of the most promising solutions, anchor-based graphs can be used to classify freely oriented objects. However, this approach suffers from missing anchor detection since valid detection relies heavily on the completeness of an anchor’s point clouds and is sensitive to missing data. This paper presents an anchor-based graph method to detect and classify arbitrarily oriented indoor objects. The anchors of each object are extracted by the structurally adjacent relationship among parts instead of the parts’ geometric metrics. In the case of adjacency, an anchor can be correctly extracted even with missing parts since the adjacency between an anchor and other parts is retained irrespective of the area extent of the considered parts. The best graph matching is achieved by finding the optimal corresponding node-pairs in a super-graph with fully connecting nodes based on maximum likelihood. The performances of the proposed method are evaluated with three indicators (object precision, object recall and object F1-score) in seven datasets. The experimental tests demonstrate the effectiveness of dealing with TLS point clouds, RGBD point clouds and Panorama RGBD point clouds, resulting in performance scores of approximately 0.8 for object precision and recall and over 0.9 for chair precision and table recall. Numéro de notice : A2021-087 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.007 date de publication en ligne : 29/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96852
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 114 - 131[article]A spatiotemporal structural graph for characterizing land cover changes / Bin Wu in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
![]()
[article]
Titre : A spatiotemporal structural graph for characterizing land cover changes Type de document : Article/Communication Auteurs : Bin Wu, Auteur ; Ballang Yu, Auteur ; Song Shu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 397 - 425 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] changement temporel
[Termes descripteurs IGN] graphe
[Termes descripteurs IGN] New York (Etats-Unis ; état)
[Termes descripteurs IGN] objet géographique
[Termes descripteurs IGN] voisinage (topologie)Résumé : (auteur) Characterizing landscape patterns and revealing their underlying processes are critical for studying climate change and environmental problems. Previous methods for mapping land cover changes largely focused on the classification of remote sensing images. Therefore, they could not provide information about the evolutionary process of land cover changes. In this paper, we developed a spatiotemporal structural graph (STSG) technique for a comprehensive analysis of land cover changes. First, a land cover neighborhood graph was generated for each snapshot to quantify the spatial relationship between adjacent land cover objects. Then, an object-based temporal tracking algorithm was designed to monitor the temporal changes between land cover objects over time. Finally, land cover evolutionary trajectories, pixel-level land cover change trajectories, and node-wise connectivity changes over time were characterized. We applied the proposed method to analyze land cover changes in Suffolk County, New York from 1996 to 2010. The results demonstrated that STSG can not only characterize and visualize detailed land cover changes spatially but also maintain the temporal sequence and relations of land cover objects in an integrated space-time environment. The proposed STSG provides a useful framework for analyzing land cover changes and can be adapted to characterize and quantify other spatiotemporal phenomena. Numéro de notice : A2021-041 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1778706 date de publication en ligne : 16/06/2020 En ligne : https://doi.org/10.1080/13658816.2020.1778706 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96753
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 397 - 425[article]Extraction of street pole-like objects based on plane filtering from mobile LiDAR data / Jingming Tu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : Extraction of street pole-like objects based on plane filtering from mobile LiDAR data Type de document : Article/Communication Auteurs : Jingming Tu, Auteur ; Jian Yao, Auteur ; Li Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 749 - 768 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] carte routière
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] forme caractéristique
[Termes descripteurs IGN] méthode robuste
[Termes descripteurs IGN] octree
[Termes descripteurs IGN] réseau routierRésumé : (auteur) Pole-like objects provide important street infrastructure for road inventory and road mapping. In this article, we proposed a novel pole-like object extraction algorithm based on plane filtering from mobile Light Detection and Ranging (LiDAR) data. The proposed approach is composed of two parts. In the first part, a novel octree-based split scheme was proposed to fit initial planes from off-ground points. The results of the plane fitting contribute to the extraction of pole-like objects. In the second part, we proposed a novel method of pole-like object extraction by plane filtering based on local geometric feature restriction and isolation detection. The proposed approach is a new solution for detecting pole-like objects from mobile LiDAR data. The innovation in this article is that we assumed that each of the pole-like objects can be represented by a plane. Thus, the essence of extracting pole-like objects will be converted to plane selecting problem. The proposed method has been tested on three data sets captured from different scenes. The average completeness, correctness, and quality of our approach can reach up to 87.66%, 88.81%, and 79.03%, which is superior to state-of-the-art approaches. The experimental results indicate that our approach can extract pole-like objects robustly and efficiently. Numéro de notice : A2021-042 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2993454 date de publication en ligne : 20/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2993454 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96758
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 749 - 768[article]Finding the most navigable path in road networks / Ramneek Kaur in Geoinformatica [en ligne], vol 25 n° 1 (January 2021)
PermalinkHyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition / Yuanyang Bu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkInferencing hourly traffic volume using data-driven machine learning and graph theory / Zhiyan Yi in Computers, Environment and Urban Systems, vol 85 (January 2021)
PermalinkNonlocal graph convolutional networks for hyperspectral image classification / Lichao Mou in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkA graph convolutional network model for evaluating potential congestion spots based on local urban built environments / Kun Qin in Transactions in GIS, Vol 24 n° 5 (October 2020)
PermalinkNEAT approach for testing and validation of geospatial network agent-based model processes: case study of influenza spread / Taylor Anderson in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
PermalinkRecognition of building group patterns using graph convolutional network / Rong Zhao in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
PermalinkA semantic graph database for the interoperability of 3D GIS data / Eva Savina Malinverni in Applied geomatics, vol 12 n° 3 (September 2020)
PermalinkComment cartographier l’occupation du sol en vue de modéliser les réseaux écologiques ? Méthodologie générale et cas d’étude en Île-de-France / Chloé Thierry in Sciences, eaux & territoires, article hors-série n° 65 (mai 2020)
PermalinkA point cloud feature regularization method by fusing judge criterion of field force / Xijiang Chen in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
Permalink