Descripteur
Termes descripteurs IGN > mathématiques > analyse mathématique > topologie > théorie des graphes
théorie des graphes |


Etendre la recherche sur niveau(x) vers le bas
A new small area estimation algorithm to balance between statistical precision and scale / Cédric Vega in International journal of applied Earth observation and geoinformation, vol 97 (May 2021)
![]()
[article]
Titre : A new small area estimation algorithm to balance between statistical precision and scale Type de document : Article/Communication Auteurs : Cédric Vega , Auteur ; Jean-Pierre Renaud, Auteur ; Ankit Sagar
, Auteur ; Olivier Bouriaud
, Auteur
Année de publication : 2021 Projets : LUE / Université de Lorraine, DIABOLO / Packalen, Tuula, ARBRE/CHM-era / Jolly, Anne Article en page(s) : n° 102303 Note générale : bibliographie
This research was funded by The French Environmental Management Agency (ADEME), grant number 16-60-C0007. The methods and algorithms for processing photogrammetric data were supported by DIABOLO project from the European Union’s Horizon 2020 research and innovation program under grant agreement No 633464, as well as CHM-ERA project from the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE). Ankit Sagar received the financial support of the French PIA project “Lorraine Université d’Excellence”, reference ANR-15-IDEX-04-LUE, through the project Impact DeepSurf.Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] arbre BSP
[Termes descripteurs IGN] capital sur pied
[Termes descripteurs IGN] données auxiliaires
[Termes descripteurs IGN] données de terrain
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] inventaire forestier national (données France)
[Termes descripteurs IGN] réduction d'échelle
[Termes descripteurs IGN] seuillage
[Termes descripteurs IGN] surface terrière
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Combining national forest inventory (NFI) data with auxiliary information allows downscaling and improving the precision of NFI estimates for small domains, where normally too few field plots are available to produce reliable estimates. In most situations, small domains represent administrative units that could greatly vary in size and forested area. In small and poorly sampled domains, the precision of estimates often drop below expected standards.
To tackle this issue, we introduce a downscaling algorithm generating the smallest possible groups of domains satisfying prescribed sampling density and estimation error. The binary space partitioning algorithm recursively divides the population of domains in two groups while the prescribed precision conditions are fulfilled.
The algorithm was tested on two major forest attributes (i.e. growing stock and basal area) in an area of 7,500 km2 dominated by hardwood forests in the centre of France. The estimation domains consisted in 157 municipalities. The field data included 819 NFI plots surveyed during a 5 years period. The auxiliary data consisted in 48 metrics derived from a forest map, photogrammetric models and Landsat images. A model-assisted framework was used for estimation. For each forest attribute, the best model was selected using a best-subset approach using a Bayesian Information Criteria. The retained models explained 58% and 41% of the observed variance for the growing stocks and basal areas respectively. The performance of the algorithm was evaluated using a minimum of 3 NFI points per domain and estimation errors varying from 10 to 50%.
For a target estimation error set to 10%, the algorithm led to a limited number of estimation domains ( The algorithm provides a flexible estimation framework for small area estimation. The key advantages of the approach are relying on its capacity to produce estimations based on a preselected precision threshold and to produce results over the whole area of interest, avoiding areas without any estimates. The algorithm could also be used on any kind of polygon layers (not only administrative ones), provided that the field sampling design enable estimation. This makes the proposed algorithm a convenient tool notably for decision makers and forest managers.Numéro de notice : A2021-067 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2021.102303 date de publication en ligne : 25/01/2021 En ligne : https://doi.org/10.1016/j.jag.2021.102303 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96992
in International journal of applied Earth observation and geoinformation > vol 97 (May 2021) . - n° 102303[article]A BiLSTM-CNN model for predicting users’ next locations based on geotagged social media / Yi Bao in International journal of geographical information science IJGIS, vol 35 n° 4 (April 2021)
![]()
[article]
Titre : A BiLSTM-CNN model for predicting users’ next locations based on geotagged social media Type de document : Article/Communication Auteurs : Yi Bao, Auteur ; Zhou Huang, Auteur ; Linna Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 639 - 660 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] géopositionnement
[Termes descripteurs IGN] graphe
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] réseau social
[Termes descripteurs IGN] service fondé sur la position
[Termes descripteurs IGN] utilisateur
[Termes descripteurs IGN] Wuhan (Chine)Résumé : (auteur) Location prediction based on spatio-temporal footprints in social media is instrumental to various applications, such as travel behavior studies, crowd detection, traffic control, and location-based service recommendation. In this study, we propose a model that uses geotags of social media to predict the potential area containing users’ next locations. In the model, we utilize HiSpatialCluster algorithm to identify clustering areas (CAs) from check-in points. CA is the basic spatial unit for predicting the potential area containing users’ next locations. Then, we use the LINE (Large-scale Information Network Embedding) to obtain the representation vector of each CA. Finally, we apply BiLSTM-CNN (Bidirectional Long Short-Term Memory-Convolutional Neural Network) for location prediction. The results show that the proposed ensemble model outperforms the single LSTM or CNN model. In the case study that identifies 100 CAs out of Weibo check-ins collected in Wuhan, China, the Top-5 predicted areas containing next locations amount to an 80% accuracy. The high accuracy is of great value for recommendation and prediction on areal unit. Numéro de notice : A2021-268 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1808896 date de publication en ligne : 26/08/2020 En ligne : https://doi.org/10.1080/13658816.2020.1808896 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97324
in International journal of geographical information science IJGIS > vol 35 n° 4 (April 2021) . - pp 639 - 660[article]Identification of common points in hybrid geodetic networks to determine vertical movements of the Earth’s crust / Kamil Kowalczyk in Journal of applied geodesy, vol 15 n° 2 (April 2021)
![]()
[article]
Titre : Identification of common points in hybrid geodetic networks to determine vertical movements of the Earth’s crust Type de document : Article/Communication Auteurs : Kamil Kowalczyk, Auteur ; Anna Maria Kowalczyk, Auteur ; Jacek Rapinski, Auteur Année de publication : 2021 Article en page(s) : pp 153 - 167 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes descripteurs IGN] déformation verticale de la croute terrestre
[Termes descripteurs IGN] géodynamique
[Termes descripteurs IGN] noeud
[Termes descripteurs IGN] réseau géodésique
[Termes descripteurs IGN] réseau hybride
[Termes descripteurs IGN] station GNSSRésumé : (Auteur) Simultaneous use of data repeated levelling measurements and continuous GNSS observations allows increasing the spatial resolution of geodynamics models. For this purpose, it is necessary to create a single network, a so-called hybrid network. This paper aims at examining the possibility of using scale-free network theory to determine the most relevant common points in hybrid networks using the distance criterion. Used on European network points: UELN (United European Levelling Network) and EPN (European Permanent GPS Network) and the regional network. In the hybrid network (UELN + EPN), 18 pseudo-nodal points with the highest number of links were identified. The accepted distance criterion shows that about 90 % of the EPN points can be used as common points. The application of the scale-free network theory allows determining the significance of points in a hybrid network. Numéro de notice : A2021-322 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jag-2021-0002 date de publication en ligne : 25/03/2021 En ligne : https://doi.org/10.1515/jag-2021-0002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97479
in Journal of applied geodesy > vol 15 n° 2 (April 2021) . - pp 153 - 167[article]Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps / Xiongfeng Yan in International journal of geographical information science IJGIS, vol 35 n° 3 (March 2021)
![]()
[article]
Titre : Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps Type de document : Article/Communication Auteurs : Xiongfeng Yan, Auteur ; Tinghua Ai, Auteur ; Min Yang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 490 - 512 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage non-dirigé
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] codage
[Termes descripteurs IGN] données vectorielles
[Termes descripteurs IGN] graphe
[Termes descripteurs IGN] mesure géométrique
[Termes descripteurs IGN] modélisation du bâti
[Termes descripteurs IGN] représentation cognitive
[Termes descripteurs IGN] représentation spatialeRésumé : (auteur) The shape of a geospatial object is an important characteristic and a significant factor in spatial cognition. Existing shape representation methods for vector-structured objects in the map space are mainly based on geometric and statistical measures. Considering that shape is complicated and cognitively related, this study develops a learning strategy to combine multiple features extracted from its boundary and obtain a reasonable shape representation. Taking building data as example, this study first models the shape of a building using a graph structure and extracts multiple features for each vertex based on the local and regional structures. A graph convolutional autoencoder (GCAE) model comprising graph convolution and autoencoder architecture is proposed to analyze the modeled graph and realize shape coding through unsupervised learning. Experiments show that the GCAE model can produce a cognitively compliant shape coding, with the ability to distinguish different shapes. It outperforms existing methods in terms of similarity measurements. Furthermore, the shape coding is experimentally proven to be effective in representing the local and global characteristics of building shape in application scenarios such as shape retrieval and matching. Numéro de notice : A2021-166 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1768260 date de publication en ligne : 25/05/2020 En ligne : https://doi.org/10.1080/13658816.2020.1768260 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97100
in International journal of geographical information science IJGIS > vol 35 n° 3 (March 2021) . - pp 490 - 512[article]An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
![]()
[article]
Titre : An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds Type de document : Article/Communication Auteurs : Fei Su, Auteur ; Haihong Zhu, Auteur ; Taoyi Chen, Auteur Année de publication : 2021 Article en page(s) : pp 114 - 131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] adjacence
[Termes descripteurs IGN] appariement de graphes
[Termes descripteurs IGN] arc
[Termes descripteurs IGN] bloc d'ancrage
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] jeu de données localisées
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] noeud
[Termes descripteurs IGN] objet 3D
[Termes descripteurs IGN] orientation
[Termes descripteurs IGN] positionnement en intérieur
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Most of the existing 3D indoor object classification methods have shown impressive achievements on the assumption that all objects are oriented in the upward direction with respect to the ground. To release this assumption, great effort has been made to handle arbitrarily oriented objects in terrestrial laser scanning (TLS) point clouds. As one of the most promising solutions, anchor-based graphs can be used to classify freely oriented objects. However, this approach suffers from missing anchor detection since valid detection relies heavily on the completeness of an anchor’s point clouds and is sensitive to missing data. This paper presents an anchor-based graph method to detect and classify arbitrarily oriented indoor objects. The anchors of each object are extracted by the structurally adjacent relationship among parts instead of the parts’ geometric metrics. In the case of adjacency, an anchor can be correctly extracted even with missing parts since the adjacency between an anchor and other parts is retained irrespective of the area extent of the considered parts. The best graph matching is achieved by finding the optimal corresponding node-pairs in a super-graph with fully connecting nodes based on maximum likelihood. The performances of the proposed method are evaluated with three indicators (object precision, object recall and object F1-score) in seven datasets. The experimental tests demonstrate the effectiveness of dealing with TLS point clouds, RGBD point clouds and Panorama RGBD point clouds, resulting in performance scores of approximately 0.8 for object precision and recall and over 0.9 for chair precision and table recall. Numéro de notice : A2021-087 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.007 date de publication en ligne : 29/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96852
in ISPRS Journal of photogrammetry and remote sensing > vol 172 (February 2021) . - pp 114 - 131[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 081-2021021 SL Revue Centre de documentation Revues en salle Disponible 081-2021022 DEP-RECF Revue Nancy Bibliothèque Nancy IFN Disponible A spatiotemporal structural graph for characterizing land cover changes / Bin Wu in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
PermalinkExtraction of street pole-like objects based on plane filtering from mobile LiDAR data / Jingming Tu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkFinding the most navigable path in road networks / Ramneek Kaur in Geoinformatica [en ligne], vol 25 n° 1 (January 2021)
PermalinkHyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition / Yuanyang Bu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkInferencing hourly traffic volume using data-driven machine learning and graph theory / Zhiyan Yi in Computers, Environment and Urban Systems, vol 85 (January 2021)
PermalinkNonlocal graph convolutional networks for hyperspectral image classification / Lichao Mou in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkA graph convolutional network model for evaluating potential congestion spots based on local urban built environments / Kun Qin in Transactions in GIS, Vol 24 n° 5 (October 2020)
PermalinkNEAT approach for testing and validation of geospatial network agent-based model processes: case study of influenza spread / Taylor Anderson in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
PermalinkRecognition of building group patterns using graph convolutional network / Rong Zhao in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
PermalinkA semantic graph database for the interoperability of 3D GIS data / Eva Savina Malinverni in Applied geomatics, vol 12 n° 3 (September 2020)
PermalinkComment cartographier l’occupation du sol en vue de modéliser les réseaux écologiques ? Méthodologie générale et cas d’étude en Île-de-France / Chloé Thierry in Sciences, eaux & territoires, article hors-série n° 65 (mai 2020)
PermalinkA point cloud feature regularization method by fusing judge criterion of field force / Xijiang Chen in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
PermalinkLearning sequential slice representation with an attention-embedding network for 3D shape recognition and retrieval in MLS point clouds / Zhipeng Luo in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
PermalinkPermalinkGeographies of maritime transport, Ch. 4. Geography versus topology in the evolution of the global container shipping network (1977-2016) / César Ducruet (2020)
![]()
PermalinkPermalinkA space-time varying graph for modelling places and events in a network / Ikechukwu Maduako in International journal of geographical information science IJGIS, vol 33 n° 10 (October 2019)
PermalinkAnalysis of collaboration networks in OpenStreetMap through weighted social multigraph mining / Quy Thy Truong in International journal of geographical information science IJGIS, vol 33 n° 7 - 8 (July - August 2019)
PermalinkComputing and querying strict, approximate, and metrically refined topological relations in linked geographic data / Blake Regalia in Transactions in GIS, vol 23 n° 3 (June 2019)
PermalinkDeeply integrating linked data with geographic information systems / Gengchen Mai in Transactions in GIS, vol 23 n° 3 (June 2019)
PermalinkPiecewise-planar approximation of large 3D data as graph-structured optimization / Stéphane Guinard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W5 (May 2019)
PermalinkPairwise coarse registration of point clouds in urban scenes using voxel-based 4-planes congruent sets / Yusheng Xu in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
PermalinkCentral place indexing : hierarchical linear indexing systems for mixed-aperture hexagonal discrete global grid systems / Kevin Sahr in Cartographica, vol 54 n° 1 (spring 2019)
PermalinkA graph-based approach for the structural analysis of road and building layouts / Mathieu Domingo in Geo-spatial Information Science, vol 22 n° 1 (March 2019)
PermalinkA derivative-free optimization-based approach for detecting architectural symmetries from 3D point clouds / Fan Xue in ISPRS Journal of photogrammetry and remote sensing, vol 148 (February 2019)
PermalinkImproving LiDAR classification accuracy by contextual label smoothing in post-processing / Nan Li in ISPRS Journal of photogrammetry and remote sensing, vol 148 (February 2019)
PermalinkPoint clouds for direct pedestrian pathfinding in urban environments / Jesus Balado in ISPRS Journal of photogrammetry and remote sensing, vol 148 (February 2019)
PermalinkPermalinkPermalinkSpatial data management in apache spark: the GeoSpark perspective and beyond / Jia Yu in Geoinformatica [en ligne], vol 23 n° 1 (January 2019)
PermalinkPermalinkPermalinkUn algorithme pour battre le record du SwissTrainChallenge : poser le pied dans chacun des 26 cantons le plus rapidement possible en utilisant uniquement des transports publics / Emmanuel Cledat in XYZ, n° 157 (décembre 2018 - février 2019)
PermalinkAn algorithm for on-the-fly K shortest paths finding in multi-storey buildings using a hierarchical topology model / Rosen Ivanov in International journal of geographical information science IJGIS, vol 32 n° 11-12 (November - December 2018)
PermalinkA context-based geoprocessing framework for optimizing meetup location of multiple moving objects along road networks / Shaohua Wang in International journal of geographical information science IJGIS, vol 32 n° 7-8 (July - August 2018)
PermalinkFrom hierarchy to networking: the evolution of the “twenty-first-century Maritime Silk Road” container shipping system / Liehui Wang in Transport reviews, vol 38 n° 4 ([01/07/2018])
PermalinkL’opérateur de collage : Gestion de plusieurs points de vue dans un contexte spatial / Géraldine Del Mondo in Revue internationale de géomatique, vol 28 n° 3 (juillet - septembre 2018)
PermalinkPré-estimation et analyse de la précision pour la cartographie par drone / Laurent Valentin Jospin in XYZ, n° 155 (juin - août 2018)
PermalinkA voxel- and graph-based strategy for segmenting man-made infrastructures using perceptual grouping laws: comparison and evaluation / Yusheng Xu in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 6 (juin 2018)
PermalinkLocal curvature entropy-based 3D terrain representation using a comprehensive Quadtree / Giyu Chen in ISPRS Journal of photogrammetry and remote sensing, vol 139 (May 2018)
PermalinkA novel orthoimage mosaic method using a weighted A∗ algorithm : Implementation and evaluation / Maoteng Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 138 (April 2018)
PermalinkSpace-time tree ensemble for action recognition and localization / Shugao Ma in International journal of computer vision, vol 126 n° 2-4 (April 2018)
PermalinkA spatio-temporal index for aerial full waveform laser scanning data / Debra F. Laefer in ISPRS Journal of photogrammetry and remote sensing, vol 138 (April 2018)
PermalinkGenerative street addresses from satellite imagery / İlke Demir in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
PermalinkProgressive registration of image features and 3D vector lines for orientation modelling / Wen-Chi Chang in Photogrammetric record, vol 33 n° 161 (March 2018)
Permalink