Descripteur
Termes descripteurs IGN > géomatique > information géographique
information géographiqueSynonyme(s)information localisée ;information géoréférencée information à référence spatialeVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection / Xi Wu in ISPRS Journal of photogrammetry and remote sensing, Vol 174 (April 2021)
![]()
[article]
Titre : A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection Type de document : Article/Communication Auteurs : Xi Wu, Auteur ; Zhenwei Shi, Auteur ; Zhengxia Zou, Auteur Année de publication : 2021 Article en page(s) : pp 87 - 104 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] altitude
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection des nuages
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] image Gaofen
[Termes descripteurs IGN] information géographique
[Termes descripteurs IGN] latitude
[Termes descripteurs IGN] longitude
[Termes descripteurs IGN] modèle statistique
[Termes descripteurs IGN] neige
[Termes descripteurs IGN] Normalized Difference Snow IndexRésumé : (auteur) Geographic information such as the altitude, latitude, and longitude are common but fundamental meta-records in remote sensing image products. In this paper, it is shown that such a group of records provides important priors for cloud and snow detection in remote sensing imagery. The intuition comes from some common geographical knowledge, where many of them are important but are often overlooked. For example, it is generally known that snow is less likely to exist in low-latitude or low-altitude areas, and clouds in different geographic may have various visual appearances. Previous cloud and snow detection methods simply ignore the use of such information, and perform detection solely based on the image data (band reflectance). Due to the neglect of such priors, most of these methods are difficult to obtain satisfactory performance in complex scenarios (e.g., cloud-snow coexistence). In this paper, a novel neural network called “Geographic Information-driven Network (GeoInfoNet)” is proposed for cloud and snow detection. In addition to the use of the image data, the model integrates the geographic information at both training and detection phases. A “geographic information encoder” is specially designed, which encodes the altitude, latitude, and longitude of imagery to a set of auxiliary maps and then feeds them to the detection network. The proposed network can be trained in an end-to-end fashion with dense robust features extracted and fused. A new dataset called “Levir_CS” for cloud and snow detection is built, which contains 4,168 Gaofen-1 satellite images and corresponding geographical records, and is over 20× larger than other datasets in this field. On “Levir_CS”, experiments show that the method achieves 90.74% intersection over union of cloud and 78.26% intersection over union of snow. It outperforms other state of the art cloud and snow detection methods with a large margin. Feature visualizations also show that the method learns some important priors which is close to the common sense. The proposed dataset and the code of GeoInfoNet are available in https://github.com/permanentCH5/GeoInfoNet. Numéro de notice : A2021-209 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.023 date de publication en ligne : 22/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.023 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97187
in ISPRS Journal of photogrammetry and remote sensing > Vol 174 (April 2021) . - pp 87 - 104[article]Fine-grained landuse characterization using ground-based pictures: a deep learning solution based on globally available data / Shivangi Srivastava in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)
![]()
[article]
Titre : Fine-grained landuse characterization using ground-based pictures: a deep learning solution based on globally available data Type de document : Article/Communication Auteurs : Shivangi Srivastava, Auteur ; John E. Vargas-Muñoz, Auteur ; Sylvain Lobry, Auteur ; Devis Tuia, Auteur Année de publication : 2020 Article en page(s) : pp 1117 - 1136 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] base de données urbaines
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] données localisées libres
[Termes descripteurs IGN] Ile-de-France
[Termes descripteurs IGN] image Streetview
[Termes descripteurs IGN] image terrestre
[Termes descripteurs IGN] information géographique
[Termes descripteurs IGN] méthode heuristique
[Termes descripteurs IGN] OpenStreetMap
[Termes descripteurs IGN] réseau socialRésumé : (auteur) We study the problem of landuse characterization at the urban-object level using deep learning algorithms. Traditionally, this task is performed by surveys or manual photo interpretation, which are expensive and difficult to update regularly. We seek to characterize usages at the single object level and to differentiate classes such as educational institutes, hospitals and religious places by visual cues contained in side-view pictures from Google Street View (GSV). These pictures provide geo-referenced information not only about the material composition of the objects but also about their actual usage, which otherwise is difficult to capture using other classical sources of data such as aerial imagery. Since the GSV database is regularly updated, this allows to consequently update the landuse maps, at lower costs than those of authoritative surveys. Because every urban-object is imaged from a number of viewpoints with street-level pictures, we propose a deep-learning based architecture that accepts arbitrary number of GSV pictures to predict the fine-grained landuse classes at the object level. These classes are taken from OpenStreetMap. A quantitative evaluation of the area of Île-de-France, France shows that our model outperforms other deep learning-based methods, making it a suitable alternative to manual landuse characterization. Numéro de notice : A2020-269 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1542698 date de publication en ligne : 18/11/2018 En ligne : https://doi.org/10.1080/13658816.2018.1542698 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95041
in International journal of geographical information science IJGIS > vol 34 n° 6 (June 2020) . - pp 1117 - 1136[article]The position of sound in audiovisual maps: an experimental study of performance in spatial memory / Nils Siepmann in Cartographica, vol 55 n° 2 (Summer 2020)
![]()
[article]
Titre : The position of sound in audiovisual maps: an experimental study of performance in spatial memory Type de document : Article/Communication Auteurs : Nils Siepmann, Auteur ; Dennis Edler, Auteur ; Julian Keil, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 136 - 150 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie numérique
[Termes descripteurs IGN] audiovisuel
[Termes descripteurs IGN] carte cognitive
[Termes descripteurs IGN] communication cartographique
[Termes descripteurs IGN] document sonore
[Termes descripteurs IGN] information géographique
[Termes descripteurs IGN] information sémantique
[Termes descripteurs IGN] mémoire
[Termes descripteurs IGN] multimediaRésumé : (auteur) Digital maps are known as reliable media for communicating spatial information. People use maps to make themselves familiar with new environments and to form cognitive representations of spatial configurations and additional semantic information that are coupled with locational information. Since the mid-1990s, cartographers have explored auditory media as cartographic elements to transfer spatial information. Among the established sound variants used in multimedia cartography, speech recordings are a popular auditory tool to enrich the visual dominance of maps. The impact of auditory elements on human spatial memory has hardly been investigated so far in cartography and spatial cognition. A recent study showed that spoken object names bound to visual location markers affect performance in memory of object locations. Map users tend to make significantly smaller spatial distortion errors in the recall of object locations if these locations are coupled with auditory semantic information (place names). The present study extends this approach by examining possible effects on sound position as cues for spatial memory performance. A monaural condition, where an auditory name is presented in a spatial location corresponding to the object location, is compared with a binaural condition (of no directional cue). The results show that a monaural communication additionally improves spatial memory performance. Interestingly, the semantic information bound to an object location appears to be the driving factor in improving this effect. Numéro de notice : A2020-441 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3138/cart-2019-0008 date de publication en ligne : 16/06/2020 En ligne : https://doi.org/10.3138/cart-2019-0008 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95499
in Cartographica > vol 55 n° 2 (Summer 2020) . - pp 136 - 150[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 031-2020021 SL Revue Centre de documentation Revues en salle Disponible A Single Model CNN for Hyperspectral Image Denoising / Alessandro Maffei in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
![]()
[article]
Titre : A Single Model CNN for Hyperspectral Image Denoising Type de document : Article/Communication Auteurs : Alessandro Maffei, Auteur ; Juan Mario Haut, Auteur ; Mercedes Eugenia Paoletti, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2516 - 2529 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] bande spectrale
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] filtrage d'information
[Termes descripteurs IGN] filtrage du bruit
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] information géographique
[Termes descripteurs IGN] signature spectraleRésumé : (auteur) Denoising is a common preprocessing step prior to the analysis and interpretation of hyperspectral images (HSIs). However, the vast majority of methods typically adopted for HSI denoising exploit architectures originally developed for grayscale or RGB images, exhibiting limitations when processing high-dimensional HSI data cubes. In particular, traditional methods do not take into account the high spectral correlation between adjacent bands in HSIs, which leads to unsatisfactory denoising performance as the rich spectral information present in HSIs is not fully exploited. To overcome this limitation, this article considers deep learning models—such as convolutional neural networks (CNNs)—to perform spectral–spatial HSI denoising. The proposed model, called HSI single denoising CNN (HSI-SDeCNN), efficiently takes into consideration both the spatial and spectral information contained in HSIs. Experimental results on both synthetic and real data demonstrate that the proposed HSI-SDeCNN outperforms other state-of-the-art HSI denoising methods. Source code: https://github.com/mhaut/HSI-SDeCNN Numéro de notice : A2020-199 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2952062 date de publication en ligne : 26/11/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2952062 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94869
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 4 (April 2020) . - pp 2516 - 2529[article]Street-Frontage-Net: urban image classification using deep convolutional neural networks / Stephen Law in International journal of geographical information science IJGIS, vol 34 n° 4 (April 2020)
![]()
[article]
Titre : Street-Frontage-Net: urban image classification using deep convolutional neural networks Type de document : Article/Communication Auteurs : Stephen Law, Auteur ; Chanuki Illushka Seresinhe, Auteur ; Yao Shen, Auteur Année de publication : 2020 Article en page(s) : pp 681- 707 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] espace public
[Termes descripteurs IGN] évaluation foncière
[Termes descripteurs IGN] extraction de données
[Termes descripteurs IGN] façade
[Termes descripteurs IGN] habitat urbain
[Termes descripteurs IGN] image Streetview
[Termes descripteurs IGN] immobilier (secteur)
[Termes descripteurs IGN] information géographique
[Termes descripteurs IGN] Londres
[Termes descripteurs IGN] matrice de confusion
[Termes descripteurs IGN] Paris (75)
[Termes descripteurs IGN] paysage urbain
[Termes descripteurs IGN] urbanisme
[Termes descripteurs IGN] vision par ordinateurRésumé : (auteur) Quantifying aspects of urban design on a massive scale is crucial to help develop a deeper understanding of urban designs elements that contribute to the success of a public space. In this study, we further develop the Street-Frontage-Net (SFN), a convolutional neural network (CNN) that can successfully evaluate the quality of street frontage as either being active (frontage containing windows and doors) or blank (frontage containing walls, fences and garages). Small-scale studies have indicated that the more active the frontage, the livelier and safer a street feels. However, collecting the city-level data necessary to evaluate street frontage quality is costly. The SFN model uses a deep CNN to classify the frontage of a street. This study expands on the previous research via five experiments. We find robust results in classifying frontage quality for an out-of-sample test set that achieves an accuracy of up to 92.0%. We also find active frontages in a neighbourhood has a significant link with increased house prices. Lastly, we find that active frontage is associated with more scenicness compared to blank frontage. While further research is needed, the results indicate the great potential for using deep learning methods in geographic information extraction and urban design. Numéro de notice : A2020-110 Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1555832 date de publication en ligne : 26/12/2018 En ligne : https://doi.org/10.1080/13658816.2018.1555832 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94712
in International journal of geographical information science IJGIS > vol 34 n° 4 (April 2020) . - pp 681- 707[article]Morphological tessellation as a way of partitioning space: Improving consistency in urban morphology at the plot scale / Martin Fleischmann in Computers, Environment and Urban Systems, vol 80 (March 2020)
PermalinkComposition of place: towards a compositional view of functional space / Emmanuel Papadakis in Cartography and Geographic Information Science, Vol 47 n° 1 (January 2020)
PermalinkExtraction de connaissances pour la description de l'environnement maritime côtier à partir de textes d'aide à la navigation / Léa Lamotte in Revue des Nouvelles Technologies de l'Information, E.36 (2020)
PermalinkGeoreferenced measurements of building objects with their simultaneous shape detection / Edward Osada in Survey review, Vol 52 n°370 (January 2020)
PermalinkPerspective switch and spatial knowledge acquisition: effects of age, mental rotation ability and visuospatial memory capacity on route learning in virtual environments with different levels of realism / Ismini E. Lokka in Cartography and Geographic Information Science, Vol 47 n° 1 (January 2020)
PermalinkA conceptual framework for studying collective reactions to events in location-based social media / Alexander Dunkel in International journal of geographical information science IJGIS, Vol 33 n° 3-4 (March - April 2019)
PermalinkPermalinkPermalinkPermalinkPermalink