Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géophysique interne > géodésie > géodésie spatiale > traitement de données GNSS > données GNSS > données Galileo
données GalileoVoir aussi |
Documents disponibles dans cette catégorie (32)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Ground surface elevation changes over permafrost areas revealed by multiple GNSS interferometric reflectometry / Yufeng Hu in Journal of geodesy, vol 96 n° 8 (August 2022)
[article]
Titre : Ground surface elevation changes over permafrost areas revealed by multiple GNSS interferometric reflectometry Type de document : Article/Communication Auteurs : Yufeng Hu, Auteur ; Ji Wang, Auteur ; Zhenhong Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 56 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] analyse diachronique
[Termes IGN] dégel
[Termes IGN] données Galileo
[Termes IGN] données GLONASS
[Termes IGN] pergélisol
[Termes IGN] rapport signal sur bruit
[Termes IGN] réflecteur
[Termes IGN] réflectométrie par GNSS
[Termes IGN] signal GNSS
[Termes IGN] surface du sol
[Termes IGN] variation saisonnièreRésumé : (auteur) Ground subsidence and uplift caused by the annual thawing and freezing of the active layer are important variables in permafrost studies. Global positioning system interferometric reflectometry (GPS-IR) has been successfully applied to retrieve the continuous ground surface movements in permafrost areas. However, only GPS signals were used in previous studies. In this study, using multiple global navigation satellite system (GNSS) signal-to-noise ratio (SNR) observations recorded by a GNSS station SG27 in Utqiaġvik, Alaska during the period from 2018 to 2021, we applied multiple GNSS-IR (multi-GNSS-IR) technique to the SNR data and obtained the complete and continuous ground surface elevation changes over the permafrost area at a daily interval in snow-free seasons in 2018 and 2019. The GLONASS-IR and Galileo-IR measurements agreed with the GPS-IR measurements at L1 frequency, which are the most consistent measurements among all multi-GNSS measurements, in terms of the overall subsidence trend but clearly showed periodic noises. We proposed a method to reconstruct the GLONASS- and Galileo-IR elevation changes by specifically grouping and fitting them with a composite model. Compared with GPS L1 results, the unbiased root mean square error (RMSE) of the reconstructed Galileo measurements reduced by 50.0% and 42.2% in 2018 and 2019, respectively, while the unbiased RMSE of the reconstructed GLONASS measurements decreased by 41.8% and 25.8% in 2018 and 2019, respectively. Fitting the composite model to the combined multi-GNSS-IR, we obtained seasonal displacements of − 3.27 ± 0.13 cm (R2 = 0.763) and − 10.56 ± 0.10 cm (R2 = 0.912) in 2018 and 2019, respectively. Moreover, we found that the abnormal summer heave was strongly correlated with rain events, implying hydrological effects on the ground surface elevation changes. Our study shows the feasibility of multi-GNSS-IR in permafrost areas for the first time. Multi-GNSS-IR opens up a great opportunity for us to investigate ground surface movements over permafrost areas with multi-source observations, which are important for our robust analysis and quantitative understanding of frozen ground dynamics under climate change. Numéro de notice : A2022-606 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01646-5 Date de publication en ligne : 13/08/2022 En ligne : https://doi.org/10.1007/s00190-022-01646-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101385
in Journal of geodesy > vol 96 n° 8 (August 2022) . - n° 56[article]GNSS observable-specific phase biases for all-frequency PPP ambiguity resolution / Jianghui Geng in Journal of geodesy, vol 96 n° 2 (February 2022)
[article]
Titre : GNSS observable-specific phase biases for all-frequency PPP ambiguity resolution Type de document : Article/Communication Auteurs : Jianghui Geng, Auteur ; Qiang Wen, Auteur ; Qiyuan Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 11 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] données Galileo
[Termes IGN] erreur de phase
[Termes IGN] erreur systématique interfréquence d'horloge
[Termes IGN] fréquence multiple
[Termes IGN] horloge du satellite
[Termes IGN] phase GPS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] résolution d'ambiguïté
[Termes IGN] signal GNSS
[Vedettes matières IGN] Traitement de données GNSSRésumé : (auteur) An unwritten rule to resolve GNSS ambiguities in precise point positioning (PPP-AR) is that users should follow faithfully the frequency choices and observable combinations mandated by satellite clock and phase bias providers. Switching to other frequencies of measurements requires that the satellite clocks be converted, albeit in a roundabout way, to agree with the new frequencies of code biases. Satellite phase biases, on the other hand, are prescribed conventionally as wide-lane and narrow-lane combinations, which prevents users from resolving other phase combinations in the case of multi-frequency observables. We therefore develop an approach to compute observable-specific phase biases (phase OSBs) in concert with the legacy, but ambiguity-fixed, satellite clocks to enable PPP-AR over any frequency choices and observable combinations at the user end, i.e., all-frequency PPP-AR. In particular, the phase OSBs on the baseline frequencies (e.g., L1/L2 for GPS and E1/E5a for Galileo) are estimated by decoupling the code OSBs pre-aligned with the satellite clocks; then satellite clocks are re-estimated by holding pre-resolved undifferenced ambiguities and phase OSBs on the baseline frequencies; finally, all third-frequency phase OSBs are determined by introducing the ambiguity-fixed satellite clocks above. We used a global network of multi-frequency GPS/Galileo data over a month to verify this approach. In dual-frequency PPP-AR using GPS L1/L2, L1/L5, Galileo E1/E5a, E1/E5b, E1/E5 and E1/E6 signals, over 95% of wide-lane and narrow-lane ambiguity residuals were within ±0.25 and ±0.15 cycles, respectively, after the code and phase OSB corrections on raw GNSS measurements. As a result, the ambiguity fixing rates reached around 95% in all PPP-AR tests, though it was only the satellite clocks aligned with the GPS L1/L2 and Galileo E1/E5a pseudorange that were applied throughout. We stress that the key to computing such phase OSBs for all-frequency PPP-AR is that the code OSBs have the same bias datum as that of the satellite clocks. Numéro de notice : A2022-135 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01602-3 Date de publication en ligne : 04/02/2022 En ligne : https://doi.org/10.1007/s00190-022-01602-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99740
in Journal of geodesy > vol 96 n° 2 (February 2022) . - n° 11[article]GPS + Galileo + QZSS + BDS tightly combined single-epoch single-frequency RTK positioning / Shaolin Zhu in Survey review, vol 53 n°376 (January 2021)
[article]
Titre : GPS + Galileo + QZSS + BDS tightly combined single-epoch single-frequency RTK positioning Type de document : Article/Communication Auteurs : Shaolin Zhu, Auteur ; Dongjie Yue, Auteur ; Jian Chen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 16 - 26 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] données BeiDou
[Termes IGN] données Galileo
[Termes IGN] données GPS
[Termes IGN] modèle stochastique
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement par GNSS
[Termes IGN] précision du positionnement
[Termes IGN] qualité du signal
[Termes IGN] Quasi-Zenith Satellite System
[Termes IGN] récepteur monofréquence
[Termes IGN] résolution d'ambiguïtéRésumé : (auteur) The multi-GNSS fusion makes positioning more reliable and accurate. Considering the signal difference of different systems, GPS + Galileo + QZSS + BDS tightly combined double-difference model (TCDDM), including function and stochastic model, is proposed. The proposed model fully utilizes the overlapping frequency signals of various systems, and thus to enhance positioning model when DISBs are known beforehand. The observations of 3 ultra-short (1~10 m) and 3 short (4~10 km) baselines were processed by self-programming software, and the single-epoch single-frequency RTK performance using different system-combined models was evaluated by ambiguity-fixed correctness rate (ACR) and positioning accuracy. It demonstrated that three- and four-system TCDDM were superior to their corresponding loosely combined double-difference model (LCDDM) for ACR and positioning accuracy especially at high cut-off elevation. Moreover, four-system TCDDM had the best RTK performance obtaining average ACRs of 100% and 97.6% even at 25° cut-off elevation for ultra-short and short baseline, respectively. Numéro de notice : A2021-047 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2019.1681681 Date de publication en ligne : 13/11/2019 En ligne : https://doi.org/10.1080/00396265.2019.1681681 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96782
in Survey review > vol 53 n°376 (January 2021) . - pp 16 - 26[article]Sub-daily polar motion from GPS, GLONASS, and Galileo / Radoslaw Zajdel in Journal of geodesy, vol 95 n° 1 (January 2021)
[article]
Titre : Sub-daily polar motion from GPS, GLONASS, and Galileo Type de document : Article/Communication Auteurs : Radoslaw Zajdel, Auteur ; Krzysztof Sosnica, Auteur ; Grzegorz Bury, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 3 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] amplitude
[Termes IGN] données Galileo
[Termes IGN] données géophysiques
[Termes IGN] données GLONASS
[Termes IGN] données GNSS
[Termes IGN] données GPS
[Termes IGN] International Earth Rotation Service
[Termes IGN] marée océanique
[Termes IGN] modèle empirique
[Termes IGN] mouvement du pôle
[Termes IGN] rotation de la Terre
[Termes IGN] variation diurneRésumé : (auteur) We derive an empirical model of the sub-daily polar motion (PM) based on the multi-GNSS processing incorporating GPS, GLONASS, and Galileo observations. The sub-daily PM model is based on 3-year multi-GNSS solutions with a 2 h temporal resolution. Firstly, we discuss differences in sub-daily PM estimates delivered from individual GNSS constellations, including GPS, GLONASS, Galileo, and the combined multi-GNSS solutions. Secondly, we evaluate the consistency between the GNSS-based estimates of the sub-daily PM with three independent models, i.e., the model recommended in the International Earth Rotation and Reference Systems Service (IERS) 2010 Conventions, the Desai–Sibois model, and the Gipson model. The sub-daily PM estimates, which are derived from system-specific solutions, are inherently affected by artificial non-tidal signals. These signals arise mainly from the resonance between the Earth rotation period and the satellite revolution period. We found strong spurious signals in GLONASS-based and Galileo-based results with amplitudes up to 30 µas. The combined multi-GNSS solution delivers the best estimates and the best consistency of the sub-daily PM with external geophysical and empirical models. Moreover, the impact of the non-tidal spurious signals in the frequency domain diminishes in the multi-GNSS combination. After the recovery of the tidal coefficients for 38 tides, we infer better consistency of the GNSS-based empirical models with the new Desai–Sibois model than the model recommended in the IERS 2010 Conventions. The consistency with the Desai–Sibois model, in terms of the inter-quartile ranges of tidal amplitude differences, reaches the level of 1.6, 5.7, 6.3, 2.2 µas for the prograde diurnal tidal terms and 1.2/2.1, 2.3/6.0, 2.6/5.5, 2.1/5.1 µas for prograde/retrograde semi-diurnal tidal terms, for the combined multi-GNSS, GPS, GLONASS, and Galileo solutions, respectively. Numéro de notice : A2021- 029 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01453-w Date de publication en ligne : 23/12/2020 En ligne : https://doi.org/10.1007/s00190-020-01453-w Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96713
in Journal of geodesy > vol 95 n° 1 (January 2021) . - n° 3[article]Geodetic VLBI for precise orbit determination of Earth satellites: a simulation study / Grzegorz Klopotek in Journal of geodesy, vol 94 n° 6 (June 2020)
[article]
Titre : Geodetic VLBI for precise orbit determination of Earth satellites: a simulation study Type de document : Article/Communication Auteurs : Grzegorz Klopotek, Auteur ; Thomas Hobiger, Auteur ; Rüdiger Haas, Auteur ; Toshimichi Otsubo, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] constellation GNSS
[Termes IGN] données Galileo
[Termes IGN] données Lageos
[Termes IGN] données VGOS
[Termes IGN] géocentre
[Termes IGN] interférométrie à très grande base
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] orbitographie
[Termes IGN] paramètres d'orientation de la Terre
[Termes IGN] quasar
[Termes IGN] rotation de la TerreRésumé : (auteur) Recent efforts of tracking low Earth orbit and medium Earth orbit (MEO) satellites using geodetic very long baseline interferometry (VLBI) raise questions on the potential of this novel observation concept for space geodesy. Therefore, we carry out extensive Monte Carlo simulations in order to investigate the feasibility of geodetic VLBI for precise orbit determination (POD) of MEO satellites and assess the impact of quality and quantity of satellite observations on the derived geodetic parameters. The MEO satellites are represented in our study by LAGEOS-1/-2 and a set of Galileo satellites. The concept is studied on the basis of 3-day solutions in which satellite observations are included into real schedules of the continuous geodetic VLBI campaign 2017 (CONT17) as well as simulated schedules concerning the next-generation VLBI system, known as the VLBI Global Observing System (VGOS). Our results indicate that geodetic VLBI can perform on a comparable level as other space-geodetic techniques concerning POD of MEO satellites. For an assumed satellite observation precision better than 14.1 mm (47 ps), an average 3D orbit precision of 2.0 cm and 6.3 cm is found for schedules including LAGEOS-1/-2 and Galileo satellites, respectively. Moreover, geocenter offsets, which were so far out of scope for the geodetic VLBI analysis, are close to the detection limit for the simulations concerning VGOS observations of Galileo satellites, with the potential to further enhance the results. Concerning the estimated satellite orbits, VGOS leads to an average precision improvement of 80% with respect to legacy VLBI. In absolute terms and for satellite observation precision of 14.1 mm (47 ps), this corresponds to an average value of 17 mm and 7 mm concerning the 3D orbit scatter and precision of geocenter components, respectively. As shown in this study, a poor satellite geometry can degrade the derived Earth rotation parameters and VLBI station positions, compared to the quasar-only reference schedules. Therefore, careful scheduling of both quasar and satellite observations should be performed in order to fully benefit from this novel observation concept. Numéro de notice : A2020-342 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01381-9 Date de publication en ligne : 11/06/2020 En ligne : https://doi.org/10.1007/s00190-020-01381-9 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95221
in Journal of geodesy > vol 94 n° 6 (June 2020)[article]Absolute field calibration for multi-GNSS receiver antennas at ETH Zurich / Daniel Willi in GPS solutions, vol 24 n° 1 (January 2020)PermalinkOptimisation des services de positionnement GNSS pour les opérations offshore d’Exploration Production de Total / Gautier Jolain (2020)PermalinkCalibration errors in determining slant Total Electron Content (TEC) from multi-GNSS data / Wei Li in Advances in space research, vol 63 n° 5 (1 March 2019)PermalinkEstimating and assessing Galileo satellite fractional cycle bias for PPP ambiguity resolution / Guorui Xiao in GPS solutions, vol 23 n° 1 (January 2019)PermalinkPermalinkEstimation of satellite position, clock and phase bias corrections / Patrick Henkel in Journal of geodesy, vol 92 n° 10 (October 2018)PermalinkOdometer, low-cost inertial sensors, and four-GNSS data to enhance PPP and attitude determination / Zhouzheng Gao in GPS solutions, vol 22 n° 3 (July 2018)PermalinkMultipath detection with the combination of SNR measurements – Example from urban environment / Peter Spanik in Geodesy and cartography, vol 66 n° 2 (December 2017)PermalinkERTK: extra-wide-lane RTK of triple-frequency GNSS signals / Bofeng Li in Journal of geodesy, vol 91 n° 9 (September 2017)PermalinkHow Galiléo benefits high-precision RTK / Xiaoguang Luo in GPS world, vol 28 n° 8 (August 2017)Permalink