Descripteur
Termes IGN > informatique > génie logiciel > programmation informatique > programmation par contraintes
programmation par contraintesSynonyme(s)PpcVoir aussi |
Documents disponibles dans cette catégorie (149)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Resilient GNSS real-time kinematic precise positioning with inequality and equality constraints / Zhetao Zhang in GPS solutions, vol 27 n° 3 (July 2023)
[article]
Titre : Resilient GNSS real-time kinematic precise positioning with inequality and equality constraints Type de document : Article/Communication Auteurs : Zhetao Zhang, Auteur ; Yuan Li, Auteur ; Xiufeng He, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] contrainte d'intégrité
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement par GNSS
[Termes IGN] précision du positionnement
[Termes IGN] résolution d'ambiguïtéRésumé : (auteur) How to conduct the GNSS real-time kinematic precise positioning in challenging environments is not an easy problem. The challenging environment mainly refers to frequent signal reflection, refraction, diffraction, and occlusion, inevitably introducing large positioning errors. We propose a resilient positioning method considering the inequality and equality constraints. Specifically, first, we introduce the functional and stochastic models of real-time kinematic (RTK) positioning, considering the impacts of challenging environments. Second, specific iterative procedures of resilient GNSS precise positioning method with inequality and equality constraints are proposed. In addition, a general form of inequality constraints in terms of coordinate components is given that is suitable for real-time kinematic situations. Four 24-h real datasets in canyon environments were collected to verify the performance of the proposed method. The results show that compared with the traditional RTK positioning without inequality constraints, the proposed method can improve the success rates of ambiguity resolution by 42.2% on average. Also, the positioning accuracy of fixed solutions can be improved significantly after applying the proposed method, where the root mean square errors can be reduced by 77.2% on average. Therefore, the proposed method can significantly improve success rates of ambiguity resolution and positioning accuracy, which is especially promising in challenging environments. Numéro de notice : A2023-213 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-023-01454-0 Date de publication en ligne : 26/04/2023 En ligne : https://doi.org/10.1007/s10291-023-01454-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103142
in GPS solutions > vol 27 n° 3 (July 2023) . - n° 116[article]Graph neural networks with constraints of environmental consistency for landslide susceptibility evaluation / Haowei Zeng in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)
[article]
Titre : Graph neural networks with constraints of environmental consistency for landslide susceptibility evaluation Type de document : Article/Communication Auteurs : Haowei Zeng, Auteur ; Qing Zhu, Auteur ; Yulin Ding, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] aléa
[Termes IGN] cartographie des risques
[Termes IGN] cohérence des données
[Termes IGN] effondrement de terrain
[Termes IGN] prédiction
[Termes IGN] programmation par contraintes
[Termes IGN] réseau neuronal de graphes
[Termes IGN] vulnérabilitéRésumé : (auteur) In complex and heterogeneous geoenvironments, landslides exhibit varying features in different environments, and data in landslide inventories are imbalanced. Existing data-driven landslide susceptibility evaluation (LSE) methods overlook environmental heterogeneity and cannot reliably predict regions with few samples. Alternatively, global random negative sampling strategies may produce imbalanced positive and negative samples in some environments, contributing to inaccurate predictions. This article proposes a graph neural network (GNN) constrained by environmental consistency (GNN-EC) to overcome these problems. The GNN-EC consists of graphs with nodes, and edges. A graph represents the environmental relationships in the study area. Nodes are geographic units delineated from terrain polygon approximation. Edges capture the relationships between node-pairs. Additionally, the weights of edges reflect the similarity between two node environments. A GNN aggregates node information in the graph for LSE. Our experiment showed that the proposed method outperformed the common machine learning methods: increasing prediction accuracy by approximately 7, 5–6 and 3–4% compared to the artificial neural network (ANN), the support vector machine (SVM) and the random forest (RF), respectively. Moreover, our method can maintain high prediction accuracy, even with a small training set. Numéro de notice : A2022-626 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2103819 Date de publication en ligne : 28/07/2022 En ligne : https://doi.org/10.1080/13658816.2022.2103819 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101396
in International journal of geographical information science IJGIS > vol 36 n° 11 (November 2022)[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022111 SL Revue Centre de documentation Revues en salle Disponible Polyline simplification based on the artificial neural network with constraints of generalization knowledge / Jiawei Du in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)
[article]
Titre : Polyline simplification based on the artificial neural network with constraints of generalization knowledge Type de document : Article/Communication Auteurs : Jiawei Du, Auteur ; Jichong Yin, Auteur ; Chengyi Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 313 - 337 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] descripteur
[Termes IGN] données maillées
[Termes IGN] données vectorielles
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] polyligne
[Termes IGN] programmation par contraintes
[Termes IGN] réseau neuronal artificiel
[Termes IGN] simplification de contour
[Vedettes matières IGN] GénéralisationRésumé : (auteur) The present paper presents techniques for polyline simplification based on an artificial neural network within the constraints of generalization knowledge. The proposed method measures polyline shape characteristics that influence polyline simplification using abstracted descriptors and then introduces these descriptors into the artificial neural network as input properties. In total, 18 descriptors categorized into three types are presented in detail. In a second approach, map simplification principles are abstracted as controllers, imposed after the output layer of the trained artificial neural network to make the polyline simplification comply with these principles. This study worked with three controllers – a basic controller and two knowledge-based controllers. These descriptors and controllers abstracted from generalization knowledge were tested in experiments to determine their efficacy in polyline simplification based on the artificial neural network. The experimental results show that the utilization of abstracted descriptors and controllers can constrain the artificial neural network-based polyline simplification according to polyline shape characteristics and simplification principles. Numéro de notice : A2022-479 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : https://doi.org/10.1080/15230406.2021.2013944 Date de publication en ligne : 17/01/2022 En ligne : https://doi.org/10.1080/15230406.2021.2013944 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100885
in Cartography and Geographic Information Science > Vol 49 n° 4 (July 2022) . - pp 313 - 337[article]Constraint-based evaluation of map images generalized by deep learning / Azelle Courtial in Journal of Geovisualization and Spatial Analysis, vol 6 n° 1 (June 2022)
[article]
Titre : Constraint-based evaluation of map images generalized by deep learning Type de document : Article/Communication Auteurs : Azelle Courtial , Auteur ; Guillaume Touya , Auteur ; Xiang Zhang, Auteur Année de publication : 2022 Projets : 2-Pas d'info accessible - article non ouvert / Article en page(s) : n° 13 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] connexité (graphes)
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] montagne
[Termes IGN] programmation par contraintes
[Termes IGN] qualité des données
[Termes IGN] rendu réaliste
[Termes IGN] route
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Deep learning techniques have recently been experimented for map generalization. Although promising, these experiments raise new problems regarding the evaluation of the output images. Traditional map generalization evaluation cannot directly be applied to the results in a raster format. Additionally, the internal evaluation used by deep learning models is mostly based on the realism of images and the accuracy of pixels, and none of these criteria is sufficient to evaluate a generalization process. Finally, deep learning processes tend to hide the causal mechanisms and do not always guarantee a result that follows cartographic principles. In this article, we propose a method to adapt constraint-based evaluation to the images generated by deep learning models. We focus on the use case of mountain road generalization, and detail seven raster-based constraints, namely, clutter, coalescence reduction, smoothness, position preservation, road connectivity preservation, noise absence, and color realism constraints. These constraints can contribute to current studies on deep learning-based map generalization, as they can help guide the learning process, compare different models, validate these models, and identify remaining problems in the output images. They can also be used to assess the quality of training examples. Numéro de notice : A2022-449 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s41651-022-00104-2 Date de publication en ligne : 07/05/2022 En ligne : http://dx.doi.org/10.1007/s41651-022-00104-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100646
in Journal of Geovisualization and Spatial Analysis > vol 6 n° 1 (June 2022) . - n° 13[article]Clustering with implicit constraints: A novel approach to housing market segmentation / Xiaoqi Zhang in Transactions in GIS, vol 26 n° 2 (April 2022)
[article]
Titre : Clustering with implicit constraints: A novel approach to housing market segmentation Type de document : Article/Communication Auteurs : Xiaoqi Zhang, Auteur ; Yanqiao Zheng, Auteur ; Qiong Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 585 - 608 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] algorithme glouton
[Termes IGN] analyse de groupement
[Termes IGN] Chine
[Termes IGN] classification par nuées dynamiques
[Termes IGN] contrainte topologique
[Termes IGN] hétérogénéité spatiale
[Termes IGN] logement
[Termes IGN] marché foncier
[Termes IGN] programmation par contraintes
[Termes IGN] segmentation
[Termes IGN] structure spatiale
[Termes IGN] zone urbaineRésumé : (auteur) Constrained clustering has been widely studied and outperforms both the traditional unsupervised clustering and experience-oriented approaches. However, the existing literature on constrained clustering concentrates on spatially explicit constraints, while many constraints in housing market studies are implicit. Ignoring the implicit constraints will result in unreliable clustering results. This article develops a novel framework for constrained clustering, which takes implicit constraints into account. Specifically, the research extends the classical greedy searching algorithm by adding one back-and-forth searching step, efficiently coping with the order sensitivity. Via evaluation on both synthetic and real data sets, it turns out that the proposed algorithm outperforms existing algorithms, even when only the traditional pairwise constraints are provided. In an application to a concrete housing market segmentation problem, the proposed algorithm shows its power to accommodate user-specified homogeneity criteria to extract hidden information on the underlying urban spatial structure. Numéro de notice : A2022-362 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12878 Date de publication en ligne : 26/12/2021 En ligne : https://doi.org/10.1111/tgis.12878 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100581
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 585 - 608[article]Road network generalization method constrained by residential areas / Zheng Lyu in ISPRS International journal of geo-information, vol 11 n° 3 (March 2022)PermalinkA constraint-based approach for identifying the urban–rural fringe of polycentric cities using multi-sourced data / Jing Yang in International journal of geographical information science IJGIS, vol 36 n° 1 (January 2022)PermalinkRecursive Gauss-Helmert model with equality constraints applied to the efficient system calibration of a 3D laser scanner / Sören Vogel in Journal of applied geodesy, vol 16 n° 1 (January 2022)PermalinkConstrained shortest path problems in bi-colored graphs: a label-setting approach / Amin AliAbdi in Geoinformatica, vol 25 n° 3 (July 2021)PermalinkLearning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation / Yansheng Li in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)PermalinkUsing geometric constraints to improve performance of image classifiers for automatic segmentation of traffic signs / Roholah Yazdan in Geomatica, vol 75 n° 1 (Mars 2021)PermalinkClustering et apprentissage profond sous contraintes pour l’analyse de séries temporelles : Application à l’analyse temporelle incrémentale en télédétection / Baptiste Lafabregue (2021)PermalinkUrban Wi-Fi fingerprinting along a public transport route / Guenther Retscher in Journal of applied geodesy, vol 14 n° 4 (October 2020)PermalinkLocal terrain modification method considering physical feature constraints for vector elements / Jiangfeng She in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)PermalinkGeological map generalization driven by size constraints / Azimjon Sayidov in ISPRS International journal of geo-information, vol 9 n° 4 (April 2020)Permalink