Descripteur
Termes IGN > sciences naturelles > physique > traitement du signal > correction du signal > correction atmosphérique > correction troposphérique
correction troposphérique |
Documents disponibles dans cette catégorie (45)



Etendre la recherche sur niveau(x) vers le bas
Tropospheric and range biases in Satellite Laser Ranging / Mateusz Drożdżewski in Journal of geodesy, vol 95 n° 9 (September 2021)
![]()
[article]
Titre : Tropospheric and range biases in Satellite Laser Ranging Type de document : Article/Communication Auteurs : Mateusz Drożdżewski, Auteur ; Krzysztof Sosnica, Auteur Année de publication : 2021 Article en page(s) : n° 100 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] correction troposphérique
[Termes IGN] données Lageos
[Termes IGN] données TLS (télémétrie)
[Termes IGN] erreur systématique
[Termes IGN] géocentre
[Termes IGN] harmonique sphérique
[Termes IGN] retard troposphérique zénithal
[Termes IGN] télémétrie laser sur satelliteRésumé : (auteur) The Satellite Laser Ranging (SLR) technique provides very accurate distance measurements to artificial Earth satellites. SLR is employed for the realization of the origin and the scale of the terrestrial reference frame. Despite the high precision, SLR observations can be affected by various systematic errors. So far, range biases were used to account for systematic measurement errors and mismodeling effects in SLR. Range biases are constant for all elevation angles and independent of the measured distance to a satellite. Recently, intensity-dependent biases for single-photon SLR detectors and offsets of barometer readings and meteorological devices were reported for some SLR stations. In this paper, we study the possibility of the direct estimation of tropospheric biases from SLR observations to LAGEOS satellites. We discuss the correlations between the station heights, range biases, tropospheric biases, and their impact on the repeatability of station coordinates, geocenter motion, and the global scale of the reference frame. We found that the solution with the estimation of tropospheric biases provides more stable station coordinates than the solution with the estimation of range biases. From the common estimation of range and tropospheric biases, we found that most of the systematic effects at SLR stations are better absorbed by elevation-dependent tropospheric biases than range biases which overestimate the total bias effect. The estimation of tropospheric biases changes the SLR-derived global scale by 0.3 mm and the geocenter coordinates by 1 mm for the Z component, causing thus an offset in the realization of the reference frame origin. Estimation of range biases introduces an offset in some SLR-derived low-degree spherical harmonics of the Earth’s gravity field. Therefore, considering elevation-dependent tropospheric and intensity biases is essential for deriving high-accuracy geodetic parameters. Numéro de notice : A2021-621 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-021-01554-0 Date de publication en ligne : 21/08/2021 En ligne : https://doi.org/10.1007/s00190-021-01554-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98237
in Journal of geodesy > vol 95 n° 9 (September 2021) . - n° 100[article]Validation of Sentinel-3A SRAL coastal sea level data at high posting rate: 80 Hz / Ana Aldarias in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : Validation of Sentinel-3A SRAL coastal sea level data at high posting rate: 80 Hz Type de document : Article/Communication Auteurs : Ana Aldarias, Auteur ; Jesus Gomez-Enri, Auteur ; Irene Laiz, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 3809 - 3821 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] coefficient de corrélation
[Termes IGN] correction troposphérique
[Termes IGN] courbe de Pearson
[Termes IGN] données altimétriques
[Termes IGN] données marégraphiques
[Termes IGN] eaux côtières
[Termes IGN] erreur moyenne quadratique
[Termes IGN] Espagne
[Termes IGN] forme d'onde
[Termes IGN] image Sentinel-SRAL
[Termes IGN] niveau de la mer
[Termes IGN] série temporelleRésumé : (auteur) Altimetry data of two and a half years (June 2016–November 2018) of Sentinel-3A SRAL (S3A-SRAL) were validated at the sampling frequency of 80 Hz. The data were obtained from the European Space Agency (ESA) Grid Processing On Demand (GPOD) service over three coastal sites in Spain: Huelva (HU) (Gulf of Cádiz), Barcelona (BA) (Western Mediterranean Sea), and Bilbao (BI) (Bay of Biscay). Two tracks were selected in each site: one ascending and one descending. Data were validated using in situ tide gauge (TG) data provided by the Spanish Puertos del Estado. The altimetry sea level anomaly time series were obtained using the corrections available in GPOD with the exception of the sea state bias (SSB) correction, not available at 80 Hz. Hence, the SSB was approximated to 5% of the significant wave height (SWH). The validation was performed using two statistical parameters, the Pearson correlation coefficient (r) and the root mean square error (rmse). In the 5–20-km segment with respect to the coastline, the results were 6–8 cm (rmse) and 0.7–0.8 (r) for all the tracks. The 0–5-km segment was also analyzed in detail to study the land effect on the altimetry data quality. The results showed that the track orientation, the angle of intersection with the coast, and the land topography concur to determine the nearest distance to the coast at which the data retain a similar level of accuracy than in the 5–20-km segment. This “distance of good quality” to shore reaches a minimum of 3 km for the tracks at HU and the descending track at BA. Numéro de notice : A2020-281 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2957649 Date de publication en ligne : 01/01/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2957649 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95102
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 3809 - 3821[article]Estimation and representation of regional atmospheric corrections for augmenting real-time single-frequency PPP / Peiyuan Zhou in GPS solutions, vol 24 n° 1 (January 2020)
![]()
[article]
Titre : Estimation and representation of regional atmospheric corrections for augmenting real-time single-frequency PPP Type de document : Article/Communication Auteurs : Peiyuan Zhou, Auteur ; Jin Wang, Auteur ; Zhixi Nie, Auteur ; Yang Gao, Auteur Année de publication : 2020 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] correction atmosphérique
[Termes IGN] correction ionosphérique
[Termes IGN] correction troposphérique
[Termes IGN] décalage d'horloge
[Termes IGN] positionnement ponctuel précis
[Termes IGN] Quasi-Zenith Satellite System
[Termes IGN] récepteur monofréquence
[Termes IGN] retard ionosphèrique
[Termes IGN] retard troposphérique
[Termes IGN] satellite GPS
[Termes IGN] station GNSS
[Termes IGN] temps réel
[Termes IGN] teneur totale en électronsRésumé : (Auteur) Real-time single-frequency precise point positioning (PPP) can be significantly augmented by applying high-quality atmospheric corrections. In previous work, the satellite-and-station-specific slant total electron content (STEC) ionospheric corrections, derived from a regional reference network, are commonly used to augment single-frequency PPP for improving positioning accuracy and faster convergence. However, since the users are required to interpolate STEC ionospheric corrections from nearby reference stations, either duplex communication links should be established or all corrections of the reference network must be retrieved, which makes it inefficient to provide augmentation services to many users. Moreover, the regional tropospheric corrections are generally neglected in augmenting real-time single-frequency PPP. In this study, we present a method to estimate and represent tropospheric and ionospheric corrections from a regional reference network, which can be efficiently disseminated to users through a simplex communication link. First, the uncombined dual-frequency PPP, with external ionospheric constraints derived from international GNSS service predicted global ionospheric map, is used for estimating atmospheric delays with observations from a regional GNSS reference network. Then, the atmospheric delays are properly represented to facilitate real-time transmission by applying a polynomial model for the representation of zenith wet tropospheric corrections, and satellite-specific STEC maps for representing the slant ionospheric corrections. The above results in only simple communication links required to retrieve the regional atmospheric corrections for real-time single-frequency PPP augmentation. Observations from a regional network of 30 GNSS reference stations with inter-station distances of about 70 km during a 1-week-long period, including both quiet and active geomagnetic conditions, are used for generating the regional atmospheric corrections. The results indicate that the average root-mean-square errors of the obtained regional tropospheric and ionospheric corrections are better than 0.01 and 0.05 m when compared with those derived from dual-frequency uncombined PPP, respectively. The positioning accuracy of the single-frequency PPP augmented with regional atmospheric corrections is at 0.141 m horizontally and 0.206 m vertically under a 95% confidence level, a significant improvement compared to single-frequency PPP without atmospheric augmentation. The convergence time is also significantly reduced with 70.4% of the positioning sessions achieving instantaneous 3D convergence. Numéro de notice : A2020-023 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-019-0920-5 Date de publication en ligne : 13/11/2019 En ligne : https://doi.org/10.1007/s10291-019-0920-5 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94466
in GPS solutions > vol 24 n° 1 (January 2020)[article]Parallel computation of regional CORS network corrections based on ionospheric-free PPP / Linyang Li in GPS solutions, vol 23 n° 3 (July 2019)
![]()
[article]
Titre : Parallel computation of regional CORS network corrections based on ionospheric-free PPP Type de document : Article/Communication Auteurs : Linyang Li, Auteur ; Zhiping Lu, Auteur ; Zhengsheng Chen, Auteur ; et al., Auteur Année de publication : 2019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes IGN] Continuously Operating Reference Station network
[Termes IGN] correction troposphérique
[Termes IGN] fractional cycle bias
[Termes IGN] Global Navigation Satellite System
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement ponctuel précis
[Termes IGN] retard troposphérique zénithal
[Termes IGN] station de référenceRésumé : (auteur) Global navigation satellite system real-time processing requires low latency, high timeliness, and high computational efficiency. A typical application is providing corrections using data from a regional Continuously Operating Reference Station (CORS) network. Usually the wide-lane and narrow-lane fractional cycle biases (FCBs) are determined at the server and broadcast to users to fix undifferenced ambiguity. Also, a tropospheric model is established at the server and broadcast to users to obtain accurate and reliable a priori zenith total delays for precise point positioning (PPP) using the ionospheric-free (IF) observation combination. Currently, serial methods are typically applied, i.e., all reference stations are involved in estimating the wide-lane and narrow-lane FCBs and establishing a regional tropospheric delay model. To improve the efficiency and shorten the latency, we develop a parallel computation method for regional CORS network corrections based on IF PPP by adopting a multicore parallel computing technology task parallel library, wherein parallel computations involving the FCBs, tropospheric delays, and tropospheric model are successively performed based on data parallelism, in which the same operation is performed concurrently on elements in an array, and task parallelism, which refers to one or more independent tasks running concurrently. Data covering four seasons from the Hong Kong and southwestern America CORS networks are utilized in the experiment. The single differenced FCBs between satellites are determined within each full pass, and a tropospheric model with an internal accuracy better than 1.4 cm and an external accuracy better than 1.6 cm is derived at the server. With the parallel implementation, the speedup ratios of FCB estimation and tropospheric modeling are 1.79, 3.15, 5.59, and 9.69 times higher for dual-core, quad-core, octa-core, and hexadeca-core platforms, respectively, than for a single-core platform. Numéro de notice : A2019-196 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-019-0864-9 Date de publication en ligne : 13/05/2019 En ligne : https://doi.org/10.1007/s10291-019-0864-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92650
in GPS solutions > vol 23 n° 3 (July 2019)[article]High-resolution models of tropospheric delays and refractivity based on GNSS and numerical weather prediction data for alpine regions in Switzerland / Karina Wilgan in Journal of geodesy, vol 93 n°6 (June 2019)
![]()
[article]
Titre : High-resolution models of tropospheric delays and refractivity based on GNSS and numerical weather prediction data for alpine regions in Switzerland Type de document : Article/Communication Auteurs : Karina Wilgan, Auteur ; Alain Geiger, Auteur Année de publication : 2019 Article en page(s) : pp 819 - 835 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] Alpes
[Termes IGN] collocation par moindres carrés
[Termes IGN] correction troposphérique
[Termes IGN] données GNSS
[Termes IGN] données météorologiques
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] modèle mathématique
[Termes IGN] précision de l'estimation
[Termes IGN] prévision météorologique
[Termes IGN] réfraction
[Termes IGN] retard troposphérique
[Termes IGN] retard troposphérique zénithal
[Termes IGN] SuisseRésumé : (auteur) The tropospheric delay of a microwave signal affects all space geodetic techniques. One possibility of modeling the delay is by introducing tropospheric models from external data sources. In this study, we present high-resolution models of tropospheric total refractivity and zenith total delay (ZTD) for the alpine area in Switzerland. The troposphere models are based on different combinations of data sources, including numerical weather prediction (NWP) model COSMO-1 with high spatial resolution of 1.1 km × 1.1 km, GNSS data from permanent geodetic stations and GPS L1-only data from low-cost permanent stations. The tropospheric parameters are interpolated to the arbitrary locations by the least-squares collocation method using the in-house developed software package COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays). The first goal of this study is to validate the obtained models with the reference radiosonde and GNSS data to show the improvement w.r.t. the previous studies that used lower resolution input data. In case of total refractivity, the profiles reconstructed from COSMO-1 model show the best agreement with the reference radiosonde measurements, with an average bias of 1.1 ppm (0.6% of the total refractivity value along a vertical profile) and standard deviation of 2.6 ppm (1.6%) averaged from the whole profile. The radiosondes are assimilated into COSMO-1 model; thus, a high correlation is expected, and this comparison is not independent. In case of ZTD, the GNSS-based model shows the highest agreement with the reference GNSS data, with an average bias of 0.2 mm (0.01%) and standard deviation of 4.3 mm (0.2%). For COSMO-based model, the agreement is also very high, especially compared to our previous studies with lower resolution NWPs. The average bias is equal to − 2.5 mm (0.1%) with standard deviation of 9.2 mm (0.5%). The second goal of this study is to test the feasibility of calculating high-resolution troposphere models over a limited area from coarser data sets. We calculate the ZTD models with spatial resolution of 20 m for a test area in Matter Valley. We include the information from the low-cost GPS stations (X-Sense), to also assess the performance and future usability of such stations. We validate the models based on three data sources w.r.t. the reference GNSS data. For the station located inside the area of the study, the models have an agreement of few mm with the reference data. For stations located further away from the study area, the agreement for X-Sense is smaller, but the standard deviations of residuals are still below 15 mm. We consider also another factor of evaluating the high-resolution models, i.e., spatial variability of the data. For designing a GNSS network, also for the tropospheric estimates, the height variability of the network may be as important as the horizontal distribution. The GNSS-based models are built from the coarsest network; thus, their variability is the lowest. The variability of X-Sense-based stations is the highest; thus, such data may be suitable for building troposphere models for very high-resolution applications. Numéro de notice : A2019-350 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-018-1203-6 Date de publication en ligne : 01/10/2018 En ligne : https://doi.org/10.1007/s00190-018-1203-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93394
in Journal of geodesy > vol 93 n°6 (June 2019) . - pp 819 - 835[article]Undifferenced zenith tropospheric modeling and its application in fast ambiguity recovery for long-range network RTK reference stations / Dezhong Chen in GPS solutions, vol 23 n° 1 (January 2019)
PermalinkA two-stage tropospheric correction model combining data from GNSS and numerical weather model / Jan Douša in GPS solutions, vol 22 n° 3 (July 2018)
PermalinkA new ZTD model based on permanent ground-based GNSS-ZTD data / M. Ding in Survey review, vol 48 n° 351 (October 2016)
PermalinkA new computerized ionosphere tomography model using the mapping function and an application to the study of seismic-ionosphere disturbance / Jian Kong in Journal of geodesy, vol 90 n° 8 (August 2016)
PermalinkCorrection troposphérique des interférogrammes issus d’images radar par mesures GNSS et modèle global d’atmosphère / Vincent Dubreuil (2016)
PermalinkPermalinkMulti-GNSS meteorology : real-time retrieving of atmospheric water vapor from BeiDou, Galileo, GLONASS, and GPS observations / Xingxing Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 12 (December 2015)
PermalinkAtmospheric water vapour sensing by means of differntial absorption spectrometry using solar and lunar radiation / Stefan Walter Münch (2014)
PermalinkPermalinkDORIS and GPS monitoring of the Gavdos calibration site in Crete / Pascal Willis in Advances in space research, vol 51 n° 8 (April 2013)
Permalink