Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > modèle numérique de terrain
modèle numérique de terrainSynonyme(s)MNT ;DTM DGMVoir aussi |
Documents disponibles dans cette catégorie (1011)


Etendre la recherche sur niveau(x) vers le bas
Improving methods to predict aboveground biomass of Pinus sylvestris in urban forest using UFB model, LiDAR and digital hemispherical photography / Ihor Kozak in Urban Forestry & Urban Greening, vol 79 (January 2023)
![]()
[article]
Titre : Improving methods to predict aboveground biomass of Pinus sylvestris in urban forest using UFB model, LiDAR and digital hemispherical photography Type de document : Article/Communication Auteurs : Ihor Kozak, Auteur ; Mikhail Popov, Auteur ; Igor Semko, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 127793 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] biomasse aérienne
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] forêt urbaine
[Termes IGN] houppier
[Termes IGN] image hémisphérique
[Termes IGN] Leaf Area Index
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle de régression
[Termes IGN] modèle numérique de terrain
[Termes IGN] photographie numérique
[Termes IGN] Pinus sylvestris
[Termes IGN] Pologne
[Termes IGN] semis de points
[Termes IGN] surface terrièreRésumé : (auteur) The article proposes methods for combining Airborne Laser Scanning (ALS) with Digital Hemispherical Photography (DHP) data required by the Urban Forest Biomass (UFB) model to predict the aboveground biomass (AGB) of Scotch pine (Pinus sylvestris L.) in urban forests of Lublin (Poland). The article also demonstrates the potential of ALS and DHP data in urban AGB estimation. ALS and Leaf Area Index (LAI) data were calculated using a voxels-vector approach based on the measurements taken at eight permanent sample plots (PSPs). The research was conducted in 2014 and the prediction was made until 2030. It was found that the determination coefficients (R2) for the Basal Area (BA) of the trees are 0.97, and the BA modeling parameters have a high correlation with those observed in the field (model efficiency (ME) 0.94). 83 % growth trajectory based on the measured BA was appropriately modeled using the UFB model (P > 0.9). The results for AGB show that the degree of fitting and accuracy are greatest for the Monte Carlo (MC) simulation technique based on ALS and DHP data (UBF with ALS and DHP) where R2 = 0.98, RMSE = 2.97 t/ha, MAE = 2.35 t/ha, rRMSE = 1.28 %, which performed better than MC simulation technique without ALS and DHP (UBF without ALS and DHP) where R2 = 0.94, RMSE = 4.58 t/ha, MAE = 3.64 t/ha, rRMSE = 3.29 %. The results indicate that the proposed method based on combining the UFB model, LiDAR and DHP allows us to improve the accuracy of the AGB prediction. Numéro de notice : A2023-023 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ufug.2022.127793 Date de publication en ligne : 23/11/2022 En ligne : https://doi.org/10.1016/j.ufug.2022.127793 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102246
in Urban Forestry & Urban Greening > vol 79 (January 2023) . - n° 127793[article]Tree position estimation from TLS data using hough transform and robust least-squares circle fitting / Maja Michałowska in Remote Sensing Applications: Society and Environment, RSASE, vol 29 (January 2023)
![]()
[article]
Titre : Tree position estimation from TLS data using hough transform and robust least-squares circle fitting Type de document : Article/Communication Auteurs : Maja Michałowska, Auteur ; Jacek Rapinski, Auteur ; Joanna Janicka, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 100863 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] branche (arbre)
[Termes IGN] compensation par moindres carrés
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] filtrage du bruit
[Termes IGN] géolocalisation
[Termes IGN] méthode robuste
[Termes IGN] modèle numérique de terrain
[Termes IGN] Pologne
[Termes IGN] semis de points
[Termes IGN] transformation de HoughRésumé : (auteur) Forest management and planning require information regarding the current state of the forest. Remote sensing techniques allow to obtain geospatial data, also for the forestry sector. As one of the remote-sensed technologies datasets, Terrestrial Laser Scanning data is widely used to derive detailed information about tree and forest stand parameters. This article presents the combination of circular Hough transform, denoising procedure, and robust least-square circle fitting method to extract stem positions from Terrestrial Laser Scanning data. In the proposed approach, initial tree stems position was detected with circular Hough transform. Then, obtained results were denoised to exclude most non-tree trunk points and analyze three-dimensional data from laser scanning to find exact circular tree stems with a robust least-square circle fitting method. The developed algorithm is effective in obtaining the trees’ geodetic positions from laser scanning data. The results generated in this study can be used as basics for further automatic determination of tree characteristics, such as tree species, height, or crown range. In this study, 94.8% tree stems delineation was generated with a mean accuracy of 87.2%, 1.64 cm of root mean square error for stem position, and 1.15 cm for tree radius measured at ground level. The process conducted in this research can be used to detect other circle-shaped objects, such as lamps or power towers, for which obtaining dense Terrestrial Laser Scanning data is available. The detected positions of these objects can power the geographic information systems or thematic industry systems, where it is necessary to determine the geodetic object position results from legal regulations. Numéro de notice : A2023-018 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rsase.2022.100863 Date de publication en ligne : 04/11/2022 En ligne : https://doi.org/10.1016/j.rsase.2022.100863 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102183
in Remote Sensing Applications: Society and Environment, RSASE > vol 29 (January 2023) . - n° 100863[article]Decadal surface changes and displacements in Switzerland / Valentin Tertius Bickel in Journal of Geovisualization and Spatial Analysis, vol 6 n° 2 (December 2022)
![]()
[article]
Titre : Decadal surface changes and displacements in Switzerland Type de document : Article/Communication Auteurs : Valentin Tertius Bickel, Auteur ; Andrea Manconi, Auteur Année de publication : 2022 Article en page(s) : n° 24 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] corrélation d'images
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données multitemporelles
[Termes IGN] effondrement de terrain
[Termes IGN] géomorphologie locale
[Termes IGN] glacier
[Termes IGN] Liechtenstein
[Termes IGN] modèle numérique de terrain
[Termes IGN] stéréophotogrammétrie
[Termes IGN] SuisseRésumé : (auteur) Multi-temporal, high-resolution, and homogeneous geospatial datasets acquired by space- and/or airborne sensors provide unprecedented opportunities for the characterization and monitoring of surface changes on very large spatial scales. Here, we demonstrate how an off-the-shelf, open-source image correlation algorithm can be combined with SwissALTI3D LiDAR-derived elevation data from different tracking periods to create country-scale surface displacement and vertical change maps of Switzerland, including Liechtenstein, with minimal computational effort. The results show that glacier displacement and ablation make up the most significant fraction of the detected surface changes in the last two decades. In addition, we identify numerous landslides and other geomorphic features, as well as manmade changes such as construction sites and landfills. All produced maps and data products are available online, free of charge. Numéro de notice : A2022-832 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s41651-022-00119-9 Date de publication en ligne : 01/08/2022 En ligne : https://doi.org/10.1007/s41651-022-00119-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102019
in Journal of Geovisualization and Spatial Analysis > vol 6 n° 2 (December 2022) . - n° 24[article]A new data-adaptive network design methodology based on the k-means clustering and modified ISODATA algorithm for regional gravity field modeling via spherical radial basis functions / Rasit Ulug in Journal of geodesy, vol 96 n° 12 (December 2022)
![]()
[article]
Titre : A new data-adaptive network design methodology based on the k-means clustering and modified ISODATA algorithm for regional gravity field modeling via spherical radial basis functions Type de document : Article/Communication Auteurs : Rasit Ulug, Auteur ; Mahmut Onur Karslıoglu, Auteur Année de publication : 2022 Article en page(s) : n° 91 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] analyse de groupement
[Termes IGN] Auvergne
[Termes IGN] centroïde
[Termes IGN] champ de pesanteur local
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] classification barycentrique
[Termes IGN] classification ISODATA
[Termes IGN] Colorado (Etats-Unis)
[Termes IGN] fonction de base radiale
[Termes IGN] largeur de bande
[Termes IGN] modèle de géopotentiel local
[Termes IGN] modèle numérique de terrainRésumé : (auteur) In this study, a new data-adaptive network design methodology called k-SRBF is presented for the spherical radial basis functions (SRBFs) in regional gravity field modeling. In this methodology, the cluster centers (centroids) obtained by the k-means clustering algorithm are post-processed to construct a network of SRBFs by replacing the centroids with the SRBFs. The post-processing procedure is inspired by the heuristic method, Iterative Self-Organizing Data Analysis Technique (ISODATA), which splits clusters within the user-defined criteria to avoid over- and under-parameterization. These criteria are the minimum spherical distance between the centroids and the minimum number of samples for each cluster. The bandwidth (depth) of each SRBF is determined using the generalized cross-validation (GCV) technique in which only the observations within the radius of impact area (RIA) are used. The numerical tests are carried out with real and simulated data sets to investigate the effect of the user-defined criteria on the network design. Different bandwidth limits are also examined, and the appropriate lower and upper bandwidth limits are chosen based on the empirical signal covariance function and user-defined criteria. Also, additional tests are performed to verify the performance of the proposed methodology in combining different types of observations, such as terrestrial and airborne data available in Colorado. The results reveal that k-SRBF is an effective methodology to establish a data-adaptive network for SRBFs. Moreover, the proposed methodology improves the condition number of normal equation matrix so that the least-squares procedure can be applied without regularization considering the user-defined criteria and bandwidth limits. Numéro de notice : A2022-877 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s00190-022-01681-2 Date de publication en ligne : 22/11/2022 En ligne : https://doi.org/10.1007/s00190-022-01681-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102190
in Journal of geodesy > vol 96 n° 12 (December 2022) . - n° 91[article]A semi-automatic method for extraction of urban features by integrating aerial images and LIDAR data and comparing its performance in areas with different feature structures (case study: comparison of the method performance in Isfahan and Toronto) / Masoud Azad in Applied geomatics, vol 14 n° 4 (December 2022)
![]()
[article]
Titre : A semi-automatic method for extraction of urban features by integrating aerial images and LIDAR data and comparing its performance in areas with different feature structures (case study: comparison of the method performance in Isfahan and Toronto) Type de document : Article/Communication Auteurs : Masoud Azad, Auteur ; Farshid Farnood Ahmadi, Auteur Année de publication : 2022 Article en page(s) : pp 589 - 607 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de la végétation
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction semi-automatique
[Termes IGN] image aérienne
[Termes IGN] Iran
[Termes IGN] modèle numérique de terrain
[Termes IGN] segmentation d'image
[Termes IGN] seuillage
[Termes IGN] Toronto
[Termes IGN] zone urbaineRésumé : (auteur) In this article, a new feature detection approach based on integration of LiDAR data and visible images in the form of a semi-automatic method has been proposed. In this approach, a two-step method for feature detection was developed using object-based analysis in order to increase the level of automation and level of accuracy in the detection process. The first step is providing a method for integration of two data sources for detection process by maintaining independency between image data and LiDAR altimetric data. In this step, the feature detection process is started based on image data and for detecting areas that detection properly is not done, LiDAR altimetric data is used. In the second step, a new method for detection of vegetation is implemented. Of the characteristics of this method is that there is no need to use the infrared band in the image data and also there is no need for LiDAR intensity data. The implemented method in the recent step is based on the new indices developed for detection of vegetation using three visible bands (red, green, and blue). The results of applying the method on two sample data sets show that the proposed approach and developed indices have the lowest dependency on the type and region of imaging and about each input image data includes visible bands (red, green, and blue) along with LiDAR data (that both data have a high spatial resolution), feature detection process is done with acceptable accuracy. Only thresholds depend on image data and change about different images. The changes are very small. Therefore, using the mean of these thresholds, despite may not be optimal for all image data, but generally is useful and for different images is efficient. In the case of many accessible images from Iran, the thresholds determined optimally by the trial-and-error method, the changes were very small. About the image data of Toronto and Iran which great changes were expected in the thresholds, the optimal thresholds showed very small changes. The results of this research demonstrated that the proposed method can successfully detect urban features (include vegetation, road, and building) with different shapes. Evaluation process showed that the overall accuracy, kappa coefficient, producer’s accuracy, and user’s accuracy of the proposed method about vegetation are 97%, 92%, 96%, and 94%, respectively. Also, the producer’s accuracy, user’s accuracy, and kappa coefficient about the building class are 94%, 95%, and 91%, respectively. About the road class these parameters are 95%, 89%, and 91%. Numéro de notice : A2022-892 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s12518-022-00455-x Date de publication en ligne : 10/08/2022 En ligne : https://doi.org/10.1007/s12518-022-00455-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102239
in Applied geomatics > vol 14 n° 4 (December 2022) . - pp 589 - 607[article]Modelling forest volume with small area estimation of forest inventory using GEDI footprints as auxiliary information / Shaohui Zhang in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)
PermalinkUAV-borne, LiDAR-based elevation modelling: a method for improving local-scale urban flood risk assessment / Katerina Trepekli in Natural Hazards, vol 113 n° 1 (August 2022)
PermalinkUncertainty interval estimates for computing slope and aspect from a gridded digital elevation model / Carlos López-Vázquez in International journal of geographical information science IJGIS, vol 36 n° 8 (August 2022)
PermalinkSimulation-driven 3D forest growth forecasting based on airborne topographic LiDAR data and shading / Štefan Kohek in International journal of applied Earth observation and geoinformation, vol 111 (July 2022)
PermalinkAnalysis of structure from motion and airborne laser scanning features for the evaluation of forest structure / Alejandro Rodríguez-Vivancos in European Journal of Forest Research, vol 141 n° 3 (June 2022)
PermalinkDirect and automatic measurements of stem curve and volume using a high-resolution airborne laser scanning system / Eric Hyyppä in Science of remote sensing, vol 5 (June 2022)
PermalinkPermalinkThe integration of multi-source remotely sensed data with hierarchically based classification approaches in support of the classification of wetlands / Aaron Judah in Canadian journal of remote sensing, vol 48 n° 2 (April 2022)
PermalinkChallenges related to the determination of altitudes of mountain peaks presented on cartographic sources / Katarzyna Chwedczuk in Geodetski vestnik, vol 66 n° 1 (March 2022)
PermalinkComparison of UAV-based LiDAR and digital aerial photogrammetry for measuring crown-level canopy height in the urban environment / Longfei Zhou in Urban Forestry & Urban Greening, vol 69 (March 2022)
Permalink