Descripteur
Termes descripteurs IGN > télédétection
télédétection
Commentaire :
Télédétection aérospatiale Télédétection par satellite Télédétection satellitaire Télédétection spatiale Appareils enregistreurs >> Agriculture de précision Capteurs (technologie) Photogrammétrie aérienne Photographie aérienne >>Terme(s) spécifique(s) : Télédétection en sciences de la Terre Cartographie radar Traitement d'images -- Techniques numériques Images de télédétection Radar à antenne synthétique Radar en sciences de la Terre Reconnaissance aérienne Satellites artificiels en télédétection Satellites de télédétection des ressources terrestres SPOT (satellites de télédétection) Surveillance électronique Télédétection hyperfréquence Télémesure spatiale Thermographie Equiv. LCSH : Remote sensing Domaine(s) : 500; 600 |


Etendre la recherche sur niveau(x) vers le bas
Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling / Stefanos Georganos in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling Type de document : Article/Communication Auteurs : Stefanos Georganos, Auteur ; Tais Grippa, Auteur ; Assane Niang Gadiaga, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 121 -1 36 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] autocorrélation spatiale
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] Dakar
[Termes descripteurs IGN] densité de population
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] population
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Machine learning algorithms such as Random Forest (RF) are being increasingly applied on traditionally geographical topics such as population estimation. Even though RF is a well performing and generalizable algorithm, the vast majority of its implementations is still ‘aspatial’ and may not address spatial heterogenous processes. At the same time, remote sensing (RS) data which are commonly used to model population can be highly spatially heterogeneous. From this scope, we present a novel geographical implementation of RF, named Geographical Random Forest (GRF) as both a predictive and exploratory tool to model population as a function of RS covariates. GRF is a disaggregation of RF into geographical space in the form of local sub-models. From the first empirical results, we conclude that GRF can be more predictive when an appropriate spatial scale is selected to model the data, with reduced residual autocorrelation and lower Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values. Finally, and of equal importance, GRF can be used as an effective exploratory tool to visualize the relationship between dependent and independent variables, highlighting interesting local variations and allowing for a better understanding of the processes that may be causing the observed spatial heterogeneity. Numéro de notice : A2021-080 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1595177 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1595177 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96822
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 121 -1 36[article]Land cover harmonization using Latent Dirichlet Allocation / Zhan Li in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
![]()
[article]
Titre : Land cover harmonization using Latent Dirichlet Allocation Type de document : Article/Communication Auteurs : Zhan Li, Auteur ; Joanne C. White, Auteur ; Michael A. Wulder, Auteur Année de publication : 2021 Article en page(s) : pp 348 - 374 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] allocation de Dirichlet latente
[Termes descripteurs IGN] Canada
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] chevauchement
[Termes descripteurs IGN] erreur de classification
[Termes descripteurs IGN] étiquetage sémantique
[Termes descripteurs IGN] harmonisation des données
[Termes descripteurs IGN] matrice d'erreur
[Termes descripteurs IGN] matrice de co-occurrence
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Large-area land cover maps are produced to satisfy different information needs. Land cover maps having partial or complete spatial and/or temporal overlap, different legends, and varying accuracies for similar classes, are increasingly common. To address these concerns and combine two 30-m resolution land cover products, we implemented a harmonization procedure using a Latent Dirichlet Allocation (LDA) model. The LDA model used regionalized class co-occurrences from multiple maps to generate a harmonized class label for each pixel by statistically characterizing land attributes from the class co-occurrences. We evaluated multiple harmonization approaches: using the LDA model alone and in combination with more commonly used information sources for harmonization (i.e. error matrices and semantic affinity scores). The results were compared with the benchmark maps generated using simple legend crosswalks and showed that using LDA outputs with error matrices performed better and increased harmonized map overall accuracy by 6–19% for areas of disagreement between the source maps. Our results revealed the importance of error matrices to harmonization, since excluding error matrices reduced overall accuracy by 4–20%. The LDA-based harmonization approach demonstrated in this paper is quantitative, transparent, portable, and efficient at leveraging the strengths of multiple land cover maps over large areas. Numéro de notice : A2021-027 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1796131 date de publication en ligne : 27/07/2020 En ligne : https://doi.org/10.1080/13658816.2020.1796131 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96701
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 348 - 374[article]Elevation models for reproducible evaluation of terrain representation / Patrick Kennelly in Cartography and Geographic Information Science, vol 48 n° 1 (January 2021)
![]()
[article]
Titre : Elevation models for reproducible evaluation of terrain representation Type de document : Article/Communication Auteurs : Patrick Kennelly, Auteur ; Tom Patterson, Auteur ; Bernhard Jenny, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 63 - 77 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes descripteurs IGN] altitude
[Termes descripteurs IGN] données multiéchelles
[Termes descripteurs IGN] figuré du terrain
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] réalité de terrain
[Termes descripteurs IGN] relief
[Termes descripteurs IGN] représentation du relief
[Termes descripteurs IGN] reproductibilité
[Termes descripteurs IGN] visualisation de donnéesRésumé : (auteur) This paper proposes elevation models to promote, evaluate, and compare various terrain representation techniques. Our goal is to increase the reproducibility of terrain rendering algorithms and techniques across different scales and landscapes. We introduce elevation models of varying terrain types, available to the user at no cost, with minimal common data imperfections such as missing data values, resampling artifacts, and seams. Three multiscale elevation models are available, each consisting of a set of elevation grids, centered on the same geographic location, with increasing cell sizes and spatial extents. We also propose a collection of single-scale elevation models of archetypal landforms including folded ridges, a braided riverbed, active and stabilized sand dunes, and a volcanic caldera. An inventory of 78 publications with a total of 155 renderings illustrating terrain visualization techniques guided the selection of landform types in the elevation models. The benefits of using the proposed elevation models include straightforward comparison of terrain representation methods across different publications and better documentation of the source data, which increases the reproducibility of terrain representations. Numéro de notice : A2021-719 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1830856 date de publication en ligne : 04/11/2020 En ligne : https://doi.org/10.1080/15230406.2020.1830856 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96459
in Cartography and Geographic Information Science > vol 48 n° 1 (January 2021) . - pp 63 - 77[article]Examining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping / Mthembeni Mngadi in Geocarto international, vol 36 n° 1 ([01/01/2021])
![]()
[article]
Titre : Examining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping Type de document : Article/Communication Auteurs : Mthembeni Mngadi, Auteur ; John Odindi, Auteur ; Kabir Peerbhay, Auteur ; Onisimo Mutanga, Auteur Année de publication : 2021 Article en page(s) : pp 1 - 12 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] analyse discriminante
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] Eucalyptus (genre)
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] KwaZulu-Natal (Afrique du Sud)
[Termes descripteurs IGN] Pinus (genre)
[Termes descripteurs IGN] télédétection spatialeRésumé : (Auteur) The successful launch and operation of the Sentinel satellite platform has provided access to freely available remotely sensed data useful for commercial forest species discrimination. Sentinel – 1 (S1) with a synthetic aperture radar (SAR) sensor and Sentinel – 2 (S2) multi-spectral sensor with additional and strategically positioned bands offer great potential for providing reliable information for discriminating and mapping commercial forest species. In this study, we sought to determine the value of S1 and S2 data characteristics in discriminating and mapping commercial forest species. Using linear discriminant analysis (LDA) algorithm, S2 multi-spectral imagery showed an overall classification accuracy of 84% (kappa = 0.81), with bands such as the red-edge (703.9–740.2 nm), narrow near infrared (835.1–864.8 nm), and short wave infrared (1613.7–2202.4 nm) particularly influential in discriminating individual forest species stands. When Sentinel 2’s spectral wavebands were fused with Sentinel 1’s (SAR) VV and VH polarimetric modes, overall classification accuracies improved to 87% (kappa = 0.83) and 88% (kappa = 0.85), respectively. These findings demonstrate the value of combining Sentinel’s multispectral and SAR structural information characteristics in improving commercial forest species discrimination. These, in addition to the sensors free availability, higher spatial resolution and larger swath width, offer unprecedented opportunities for improved local and large scale commercial forest species discrimination and mapping. Numéro de notice : A2021-050 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1585483 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1585483 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96719
in Geocarto international > vol 36 n° 1 [01/01/2021] . - pp 1 - 12[article]How do people perceive the disclosure risk of maps? Examining the perceived disclosure risk of maps and its implications for geoprivacy protection / Junghwan Kim in Cartography and Geographic Information Science, vol 48 n° 1 (January 2021)
![]()
[article]
Titre : How do people perceive the disclosure risk of maps? Examining the perceived disclosure risk of maps and its implications for geoprivacy protection Type de document : Article/Communication Auteurs : Junghwan Kim, Auteur ; Mei-Po Kwan, Auteur ; Margaret C. Levenstein, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2 - 20 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Information géographique
[Termes descripteurs IGN] cartographie thématique
[Termes descripteurs IGN] confidentialité
[Termes descripteurs IGN] données personnelles
[Termes descripteurs IGN] droit privé
[Termes descripteurs IGN] entretien d'enquête
[Termes descripteurs IGN] Geomasquage
[Termes descripteurs IGN] information cartographique
[Termes descripteurs IGN] photo-identification
[Termes descripteurs IGN] protection de la vie privée
[Termes descripteurs IGN] vulnérabilitéRésumé : (auteur) This research examines how people subjectively perceive the disclosure risk of a map using original data collected in an online survey with 856 participants. The results indicate that perceived disclosure risk increases as the amount of locational information displayed on a map increases. Compared to point-based maps, perceived disclosure risk is significantly lower for kernel density maps, convex hull maps, and standard deviational ellipse maps. The results also revealed that perceived disclosure risk is affected by map scale and the presence of information of other people on a map. For geomasking methods, perceived disclosure risk decreases as aggregation level increases and as relocation distance increases. However, aggregation methods (point to polygon) are more effective in preventing the re-identification of individuals when compared to relocation methods (point to point). Lastly, the perceived disclosure risk of a map that displays socially-vulnerable people is significantly higher than that of a map that displays non-vulnerable groups. Specifically, a map displaying the private locations of elementary school students has the highest perceived disclosure risk. Based on the results, a set of geoprivacy protection guidelines for mapping people’s private locations to minimize people’s perceived disclosure risk is proposed. Implications for mapping infectious diseases like the COVID-19 are also discussed. Numéro de notice : A2021-016 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1794976 date de publication en ligne : 24/08/2020 En ligne : https://doi.org/10.1080/15230406.2020.1794976 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96451
in Cartography and Geographic Information Science > vol 48 n° 1 (January 2021) . - pp 2 - 20[article]Retrieving surface soil water content using a soil texture adjusted vegetation index and unmanned aerial system images / Haibin Gu in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkSpatial characterization and distribution modelling of Ensete ventricosum (wild and cultivated) in Ethiopia / Meron Awoke Eshetae in Geocarto international, vol 36 n° 1 ([01/01/2021])
PermalinkThe Influence of camera calibration on nearshore bathymetry estimation from UAV Vvdeos / Gonzalo Simarro in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkCharacterizing the spatial and temporal variation of the land surface temperature hotspots in Wuhan from a local scale / Chen Yang in Geo-spatial Information Science, vol 23 n° 4 (December 2020)
PermalinkInnovative approaches, tools and visualization techniques for analysing land use structures and dynamics of cities and regions (Editorial) / Robert Hecht in Journal of Geovisualization and Spatial Analysis, vol 4 n° 2 (December 2020)
PermalinkQuantification of cotton water consumption by remote sensing / Jefferson Vieira José in Geocarto international, vol 35 n° 16 ([01/12/2020])
PermalinkRemote sensing in urban planning: Contributions towards ecologically sound policies? / Thilo Wellmann in Landscape and Urban Planning, vol 204 (December 2020)
PermalinkIs field-measured tree height as reliable as believed – Part II, A comparison study of tree height estimates from conventional field measurement and low-cost close-range remote sensing in a deciduous forest / Luka Jurjević in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkSoil erosion assessment using RUSLE model and its validation by FR probability model / Amiya Gayen in Geocarto international, vol 35 n° 15 ([01/11/2020])
PermalinkThe construction of sound speed field based on back propagation neural network in the global ocean / Junting Wang in Marine geodesy, vol 43 n° 6 (November 2020)
Permalink